The epidemiology and control profile of malaria in Kenya

June 2016
<table>
<thead>
<tr>
<th>List of Authors</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdisalan M Noor</td>
<td>Information for Malaria Project (INFORM), Spatial Health Metrics Group, KEMRI-</td>
</tr>
<tr>
<td></td>
<td>Wellcome Trust Research Programme, Nairobi, Kenya</td>
</tr>
<tr>
<td>Peter Macharia</td>
<td></td>
</tr>
<tr>
<td>Paul Ouma</td>
<td></td>
</tr>
<tr>
<td>Stephen Oloo</td>
<td></td>
</tr>
<tr>
<td>Joseph Maina</td>
<td></td>
</tr>
<tr>
<td>Ezekiel Gogo</td>
<td></td>
</tr>
<tr>
<td>David Kyalio</td>
<td></td>
</tr>
<tr>
<td>Lukio Olweny</td>
<td></td>
</tr>
<tr>
<td>Caroline Kabaria</td>
<td></td>
</tr>
<tr>
<td>Damaris Kinyoki</td>
<td></td>
</tr>
<tr>
<td>Robert W Snow</td>
<td></td>
</tr>
<tr>
<td>Peter Macharia</td>
<td>London School of Hygiene and tropical Medicine, UK</td>
</tr>
<tr>
<td>Paul Ouma</td>
<td></td>
</tr>
<tr>
<td>Stephen Oloo</td>
<td></td>
</tr>
<tr>
<td>Joseph Maina</td>
<td></td>
</tr>
<tr>
<td>Ezekiel Gogo</td>
<td></td>
</tr>
<tr>
<td>David Kyalio</td>
<td></td>
</tr>
<tr>
<td>Lukio Olweny</td>
<td></td>
</tr>
<tr>
<td>Caroline Kabaria</td>
<td></td>
</tr>
<tr>
<td>Damaris Kinyoki</td>
<td></td>
</tr>
<tr>
<td>Robert W Snow</td>
<td></td>
</tr>
<tr>
<td>Ngozi Erondo</td>
<td></td>
</tr>
<tr>
<td>David Schellenberg</td>
<td></td>
</tr>
<tr>
<td>Dr Rebecca Kiptui</td>
<td>National Malaria Control Programme, Ministry of Health</td>
</tr>
<tr>
<td>Dr Kiambo Njagi</td>
<td></td>
</tr>
<tr>
<td>Mr Andrew Wamari</td>
<td></td>
</tr>
<tr>
<td>Mrs Christine Mbuli</td>
<td></td>
</tr>
<tr>
<td>Dr Ahmed Deen Omar</td>
<td></td>
</tr>
<tr>
<td>Dr Waqo Ejersa</td>
<td></td>
</tr>
</tbody>
</table>

Please use the following citation when quoting any part of the whole of this document:

Published by: National Malaria Control Programme
Ministry of Health,
P. O. Box 1992 KNH
Nairobi 00202, Kenya
Email: head.domc@domckeny.or.ke
http://www.nmcp.or.ke

The preparation of this report was made possible through financial assistance from the Department for International Development (DFID), UK. The opinions expressed in this publication do not necessarily reflect the views of the funder and or the UK Government.
Preface

Over the last 15 years the Government and international donors under the Roll Back Malaria Partnership have invested billions of shillings in reducing the burden of malaria in Kenya. In particular significant funding and technical support has been received from the GFATM, PMI, DFID, WHO and other partners. Across the country, tens of millions of insecticide treated nets (ITNs) and artemisinin combination therapy (ACT) have been distributed to protect the population and to treat those sick with malaria, respectively. In epidemic prone and a few selected high burden counties, millions of households have also been covered with indoor residual spraying (IRS). To build on these achievements, the National Malaria Strategy (NMS) 2009-2017 has even more ambitious goals to fulfil the fundamental vision of a malaria free Kenya.

To achieve these goals, effective planning and allocation of resources is paramount. This requires high quality evidence on the epidemiology of malaria, the distribution of population under different transmission settings and their access to various interventions. This evidence must be at geographic units where relevant policy implementation decisions are made. Under the new devolved system established by the 2010 Kenya constitution, the delivery of health care to the population, including implementation of malaria prevention and treatment, has become the role of the County government, with budgetary and regulatory support from the National Ministry of Health. To support evidence-based decision making, the Kenya government, with support from partners developed a detailed County malaria epidemiology and control profiles in 2013. This effort was the first across sub-Saharan Africa to link resource allocation with such detailed sub-national evidence in the epidemiology of malaria and has since been adopted by several countries in the continent.

In the intervening years, new data on the malaria burden have become available and large scale efforts at the scale up of malaria have been undertaken. Furthermore, updated profiles are also required to mark the end of the Millennium Development Goals and develop baseline data for the Sustainable Development Goals (SDGs). It is for these reasons that the NMCP, with financial support from DFID has commissioned the Kenya Medical Research Institute/Wellcome Trust Research Programme and the London School of Hygiene and Tropical Medicine of the United Kingdom, under the LINK Project, to undertake a detailed review of the epidemiology and control of malaria in Kenya. Updated data on malaria epidemiology and vector control and new evidence on case management and prevention of malaria in pregnant women has been included.

The Ministry of Health is confident that the County epidemiology and control profiles developed here will provide the basis for more efficient decision-making for malaria control. The Kenyan government, in collaboration with donors and other partners, is confident that the country is on track to achieve the goals set out in the NMS 2009-2018, the Vision 2030 and the SDGs.

Dr. Kioko Jackson K., OGW
Director of Medical Services
Ministry of Health Kenya
Acknowledgements

We acknowledge all those who have generously provided unpublished parasite, vectors and intervention data, helped locate information or the geo-coordinates of data necessary to complete the analysis and/or provided comments on this report:

Table of Contents

Acknowledgements .. ii
Abbreviations .. v

Chapter 1: Introduction ... 1

Chapter 2: Country Context ... 2
 2.1 Geography and climate ... 2
 2.2 Population ... 4
 2.3 Administration ... 6
 2.4 Health service delivery and mapping of health facilities ... 8

Chapter 3: History of Malaria Control in Kenya ... 10
 3.1 1990 to 1999 ... 10
 3.4 From 2000 – 2004 .. 11
 3.5 From 2005 – 2015 .. 13

Chapter 4: Mapping Malaria Risk ... 19
 4.1 Previous mapping of malaria risk in Kenya .. 19
 4.2 Mapping *P. falciparum* malaria risk from 2000-2015 ... 22
 4.2.1 Parasite prevalence data ... 22
 4.2.2 Geostatistical modelling of *P. falciparum* prevalence .. 23
 4.3 Mapping the distribution of vectors ... 27

Chapter 5: Mapping of Vector Control Interventions .. 32
 5.1 The scale up of vector control in Kenya .. 32
 5.2 The number of ITNs distributed in Kenya, 2004-2015 ... 33
 5.3 The coverage and use of vector control in Kenya ... 38
 5.3.1 Coverage and use of insecticide treated nets (ITNs) .. 39
 5.3.2 Coverage of indoor residual spraying (IRS) .. 44

Chapter 6: Prevention of Malaria in Pregnancy .. 46

Chapter 7: Malaria Case Management ... 50

Chapter 8: Key Findings .. 54
 8.1 Changing *P. falciparum* parasite prevalence .. 54
 8.2 Progress in vector control interventions ... 54
 8.3 Prevention of malaria in pregnancy ... 54
 8.4 Improvements in treatment seeking and access to recommended treatment 55

References .. 56

Annex A List of counties and sub-counties in Kenya .. 60
Annex B Model-based geostatistical methods .. 65
Annex C Small Area Estimation Methods .. 69

County Profiles .. 72
Abbreviations

ACT Artemisinin based Combination Therapy
AL Artemether-Lumefantrine
ANC Ante-Natal Care
CBS Central Bureau of Statistics
CDC Center for Disease Control and Prevention, USA
CHW Community Health Worker
CQ Chloroquine
DEM Digital Elevation Map
DFID Department for International Development
DHMT District Health Management Teams
DOMC Division of Malaria Control
DSS Demographic Surveillance System
DVBD Division of Vector Borne Diseases
DVBNBD Division of Vector Borne and Neglected Diseases
EA Enumeration Area
EPI Expanded Programme on Immunization
EV Enhanced Vegetation Index
FSD Financial Services Deepening
GIS Geographic Information System
GFATM Global Fund to Fight AIDS, Tuberculosis and Malaria
GMP Global Malaria Programme, WHO
GOK Government of Kenya
HIMAL Highland Malaria Project
HMIS Health Management Information System
IEC Information, Education & Communications
IMCI Integrated Management of Childhood Illness
IPTp Intermittent Presumptive Treatment in pregnancy
IRS Indoor Residual House-Spraying
ITN Insecticide-treated nets
INFORM Information for Malaria
KAIS Kenya Aids Indicator Survey
KDHS Kenya Demographic & Health Survey
KEMRI Kenya Medical Research Institute
KEMRI-WTRP Kenya Medical Research Institute-Wellcome Trust Research Programme
KENSA Kenya Medical Supplies Agency
KEPI Kenya Expanded Programme on Immunization
KNBS Kenya National Bureau of Statistics
KNMS Kenya National Malaria Strategy
KSPA Kenya Service Provision Assessment
LLIN Long-Lasting Insecticidal Net
LSHTM London School of Hygiene and Tropical Medicine
M&E Monitoring & Evaluation
MDG Millennium Development Goal
MCH Maternal & Child Health
MIP Malaria in Pregnancy
MIS Malaria Indicator Survey
MOE Ministry of Education
MOH Ministry of Health
MOMS Ministry of Medical Services
MOPHS Ministry of Public Health & Sanitation
MPHD Malaria Public Health Department
NGO Non-Governmental Organization
NHFD National Health Facility Database
NHSSP National Health Sector Strategic Plan
PfPR *Plasmodium falciparum* parasite rate
PfPRs-10 *Plasmodium falciparum* parasite rate standardized to ages 2 to 9 years
PMI President's Malaria Initiative
PSI Population Services International
QN Quinine
RBM Roll Back Malaria
RBM-HWG Roll Back Malaria Harmonization Working Group
RDT Rapid Diagnostic Test
SP Sulphadoxine-Pyrimethamine
TSI Temperature Suitability Index
UN United Nations
UNICEF United Nations Children's Fund
USAID United States Agency for International Development
WHO World Health Organization
Chapter 1: Introduction

In 2012, a County malaria epidemiological profile of Kenya was developed by the National Malaria Control Programme (NMCP) with funding from the United States President’s Malaria Initiative (PMI) and technical support from the Kenya Medical Research Institute-Wellcome Trust Research Programme (KEMRI-WTRP) and MEASURE Evaluation [Noor et al 2013]. The County profiles have been the basis for sub-national malaria control planning since the devolution of health service delivery in 2013. This pioneering work represents the first initiative led by a Ministry of Health in sub-Saharan Africa to systematically assemble and analyze empirical malaria risk and intervention data and adapt control to the heterogeneous epidemiology of the disease. This approach to malaria epidemiological profiling has now been implemented in over 20 countries in sub-Saharan Africa (SSA) through funding support from the United Kingdom Department for International Development (DFID) starting in 2013 [www.inform-malaria.org]. At the same time, changes in the malaria funding landscape has led to an increasing demand for detailed epidemiological evidence as the basis for support and targeting of interventions.

DFID’s support started as a Phase 1 pilot initiative in 2013-2014 covering Ethiopia, the Democratic Republic of Congo, Ghana, Mali, Malawi, Nigeria, Tanzania and Uganda led by the KEMRI-WTRP’s Information for Malaria (INFORM) Project [www.inform-malaria.org]. Since then, DFID extended funding to the LINK project, which is a partnership between the London School of Hygiene and Tropical Medicine (LSHTM) and INFORM [www.inform-malaria.org], to implement a four-year Phase II project beginning October 2014 to re-profile Kenya and the eight pilot countries and develop profiles in 14 new countries.

The 2012 Kenya County epidemiological profile has generated considerable interest among malaria control stakeholders nationally and at the counties. A considerable amount of data relevant to malaria control has since become available in Kenya including: the largest ever Demographic and Health Survey (DHS) undertaken in 2014-15 and designed to provide measures precise at the County level; the third national Malaria Indicator Survey (MIS) in 2015; the scale up of the second version of the District Health Information System (DHIS2); and the distribution data on the free mass distribution of long lasting Insecticidal Nets (LLINs) in 2014 and 2015.

In line with the NMCP’s commitment to continuous assembly and use of the relevant evidence, it commissioned the LINK project team, in December 2015, to start the process of developing an updated County epidemiological profile in Kenya with the aim of providing information on sub-county variations in both malaria risk and intervention coverage to support better control planning at the County level.

This report therefore represents the outcome and extensive assembly and analysis of malaria data in Kenya, building on the experiences of Phase 1, to better guide policy and operational decisions to improve malaria control at national and county levels.
Chapter 2: Country Context

2.1 Geography and climate

Kenya covers an area of 582,550 km\(^2\) and has a diverse ecology - savannah, tropical, equatorial, volcanic and tectonic. It is bordered by Tanzania to the south, Uganda to the west, South Sudan to the north-west, Ethiopia to the north and Somalia to the north-east. Approximately 80\% of Kenya’s land is arid and semi-arid, only 20\% is arable and only 1.9\% of the total surface area is occupied by standing water (Figure 2.1a). The great East African Rift Valley extends from Lake Victoria to Lake Turkana and further south-east to the Indian Ocean. The country has a number of large rivers including the Tana, Galana, Turkel and Nzoia.

The arid and semi-arid areas, the savannah plateau and the coastal hinterland have considerably lower rainfall (Figure 2.1b) that is acutely seasonal with an annual average of about <250 – 500 mm. The Lake Victoria region, the western and central highlands receive the highest rainfall in the country and exhibit less seasonality. The "long rains" occur from March/April to May/June. The "short rains" occur from October to November/December. The start of these seasons depends largely on the location and altitude, whether lowlands or highlands.

The hottest period is February and March, leading into the season of the long rains, and the coldest is in July, until mid-August. The varied topography and altitude contributes to large variations in ambient temperature (Figure 2.2c). The country has a warm and humid tropical climate on its 400 km Indian Ocean coastline, including the port city of Mombasa that also serves as an importation gateway to other East African countries. The climate is cooler in the savannah grasslands around the capital, Nairobi, and increasingly cooler towards Mount Kenya. The Nyanza region experiences a hot and dry climate, which becomes humid around Lake Victoria. Away from the Lake, are the temperate and forested hilly areas in the neighbouring western highland region. The Kenyan Highlands comprise the greenest (Figure 2.1d) and one of the most successful agricultural production regions in Africa. The highlands are the site of the highest point in Kenya and the second highest peak on the continent: Mount Kenya (5199 metre above mean sea level). The north-eastern regions along the border with Somalia and Ethiopia are arid and semi-arid areas with some desert areas (Figure 2.1e).

A temperature Suitability Index (TSI) for malaria transmission [Gething et al., 2011] shows that the Lake Victoria and Coastal regions have the ambient temperatures suitable for malaria transmission (Figure 2.1f) and have the necessary amount and seasonality of rainfall to sustain lengthy periods of transmission.
Figure 2.1 Kenya maps of: a) elevation (0 to 5199 metres above mean seas level) and main water features; b) mean monthly rainfall (mm); c) mean temperature (°C); d) vegetation; and e) aridity index.

Figure 2.1a shows altitude in metres above sea level. The Kenya’s Digital Elevation Models was downloaded from NASA’s Shuttle Radar Topography Mission at the USGS Land Processes Distributed Active Archive Center (LP DAAC) website (http://gdex.cr.usgs.gov/gdex/ accessed on 19 March 2013) at 30m resolution. The lakes surface was obtained from the Global Lakes and Wetlands Database (http://www.worldwildlife.org/pages/global-lakes-and-wetlands-database). The rivers were from International Livestock Research Institute (ILRI) GIS services portal provided at http://192.156.137.110/gis/.

Rainfall (Figure 2.1b) is one of the determinants of vector abundance. Monthly rainfall surfaces exist that are produced from global weather station records gathered from various sources (1950-2000) and interpolated using thin-plate smoothing spline algorithm to produce a continuous global surface [Hijmans et al., 2005] and monthly average rainfall raster surfaces at 1×1 km resolution available from the WorldClim website. Precipitation is shown in mm averages per pixel over this period of time (1950-2000).

For vegetation cover (Figure 2.1d), Fourier-processed Enhanced Vegetation Index (EVI), derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensor imagery and available at approx. 1×1 km spatial resolution [Scharlemann et al., 2008] was used to develop an annual mean EVI surface. EVI is an index of intensity of photosynthetic activity and ranges from 0 (no vegetation) to 1 (complete vegetation).
2.2 Population

Based on the 2009 census, the population of Kenya was 38,610,097 and projected to be over 43 million by 2015 [KNBS, 2010]. Kenya’s population is over-dispersed with the highest densities along the west-east belt comprising of the Lake Victoria region, the western and central highlands, the Nairobi corridor through to the main coastal areas. The southern and northern regions are sparsely populated. This over-dispersion of population has consequences for disease distribution and health service delivery and requires mapping at the highest spatial resolutions possible.

To improve mapping of population distribution patterns, spatial modelling techniques have been developed to reallocate populations within census units to finer gridded surfaces [Linder et al., 2012]. In brief, a dasymetric modeling technique [Mennis, 2009] was used to redistribute population counts within the 6603 sub-locations used during the 2009 national census and land cover data sets derived from satellite imagery. A different population weight was assigned to each land cover class in order to shift populations away from unlikely populated areas, for example game reserves or arid deserts and concentrate populations in built-up areas. The net result was a gridded dataset of population distribution (counts) at 0.1 × 0.1 km resolution. The population distribution datasets were projected to years used to predict malaria risk (see Chapter 4) using UN national rural and urban growth rates [UN, 2011] and made to match the total national population estimates provided by the UN Population Division [UN, 2010] for these years (Figure 2.2a). The population

2 Global mean Aridity Index for the period 1950-2000 at 30' spatial resolution has been developed as a function of precipitation and evapo-transpiration [Trabucco et al., 2009]. The Aridity Index (AI) = Mean Annual Precipitation (MAP)/Mean Annual Potential Evapo-Transpiration, where values increase for more humid conditions, and decrease with more arid conditions. Mean annual precipitation (MAP) values were obtained from the WorldClim Global Climate Data [Hijmans et al. 2005] for the years 1950-2000. The Global Potential Evapo-Transpiration (PET) layers estimated on a monthly average basis were used to generate/aggregate mean annual values (MAE). PET is a measure of the ability of the atmosphere to remove water through Evapo-Transpiration process. PET is calculated as PET = 0.0023 • RA • (Tmean + 17.8) • TD0.5 (mm / day) where Tmean is mean monthly temperature, TD is mean monthly temperature range and RA is the mean monthly extra-terrestrial radiation. The Hargreaves method has been used, monthly average temperature has been sourced from WorldClim database, and monthly extra-terrestrial radiation, calculated using a methodology presented by Allen et al. (1998). Temperature range (TD) is a proxy to describe the effect of cloud cover on the quantity of extra-terrestrial radiation reaching the land surface.

Temperature Suitability Index TSI is a metric for the effect of temperature on malaria transmission, a temperature suitability index (TSI) has been developed at a spatial resolution of 1 x 1 km [Gething et al., 2011]. The TSI model uses a biological framework based on survival of vectors and the fluctuating monthly ambient temperature effects on the duration of sporogony that must be completed within the lifetime of a single generation of Anophelines and constructed using monthly temperature time series [Hijmans et al., 2003]. On a scale of increasing transmission suitability, TSI ranges from 0 (unsuitable) to 1 (most suitable).
Redistribution process accounted for restricted unpopulated areas such as national parks and game reserves (Figure 2.2b).

Figure 2.2 Kenya maps of: a) population distribution at 1 x 1 km spatial resolution; b) parks and game reserves (n=39, shown in green); and c) urban areas (shown in red).

Further classification of population by urban and rural is important in understanding the variation of malaria risk and intervention coverage by residence. In malaria endemic settings, urban areas have been shown to have generally lower risk of malaria transmission [Hay et al 2005]. In Kenya an urban

1 Data on Kenyan National Parks and Game Reserves was downloaded from the World Database on Protected Areas (WDPA) [IUCN and UNEP-WCMC 2015]. The WDPA is a joint project between the United Nations Environment Programme (UNEP) and the International Union for Conservation of Nature (IUCN), managed by UNEP World Conservation Monitoring Centre (UNEP-WCMC) [IUCN and UNEP-WCMC 2015]. There are 39 gazette and mapped protected areas in Kenya, the largest being the huge expanses occupied by Tsavo East and Tsavo West national parks north of the Counties of Kilifi, Kwale and Mombasa.
area is defined as an area with an increased density of human-created structures in comparison to the areas surrounding it and has a population of 2,000 and above. In this definition, urban areas include the following: Cities, Municipalities, Town Councils and Urban councils and even relatively small trading centres (KNBS 2010). To develop an urban surface that would have a credible relationship with malaria transmission, the population surface was aggregated to 1×1 km spatial resolution (Figure 2.2a). Areas with counts of people $\geq 2,000$ per square kilometre were extracted from the population density map in the previous slide (n=233) and were overlaid on Google Earth (Google Inc Version 7.1.5) to capture the true extent of urban areas. The final urban areas identified were 69 (Figure 2.2c) and among those with a projected population of over 100,000 include Nairobi (4,684,000), Mombasa (1,092,000), Nakuru (458,000), Kisumu (424,000), Eldoret (250,000) Ruiru (139,000), Thika (112,000), and Malindi (106,000).

2.3 Administration

In August 2010, Kenya passed a new constitution that moved governance from a centralized system to one that devolved political governance and the delivery of some key services to 47 county governments [GoK, 2010] with budgetary support and oversight from the national government. The fourth schedule of the constitution of Kenya identifies the need to facilitate progressive realization by all to the right to health, by assigning functions to both the national and county governments. The counties are assigned the service delivery functions while the national government provides national referral, policy guidelines, capacity building and technical assistance. The National government, in consultation with the County governments, develops legislative and administrative frameworks that guide the classification and operations of each level of the health service delivery system [MOH, 2014]. The constitution empowers counties to determine the organization of the County and its various departments. The counties therefore have the freedom to modify the organizational structure in a manner that best promotes efficiency in the delivery of services and utilization of resources [MOH, 2014]. The functions and provision of services of each county government in theory are decentralized to the sub-counties within the County established under Article 89 of the Constitution [CGA, 2012].

Following the general elections in March 2013, the health service delivery function was formally transferred to counties in August, 2013, and one-third of the total devolved budget of KSh 210 billion was earmarked for health in the 2013/2014 budget, enabling Counties to become operational. The implementation of the Kenya Health Sector Strategic and Investment Plan 2013-2017 (KHSSP 2013-2017) takes into account the devolved system of governance. Thus, the arrangements and processes of the various institutions are being re-oriented to conform to a devolved health system. The strategy is also aligned to the Kenya vision 2030 policy framework and other global health commitments, using a three pronged framework (comprehensive, balanced and coherent) to define policy direction [KPMG, 2013].
Figure 2.3 Kenya maps of: a) counties (n=47); and b) sub-counties (n=295). Insets shows the sub-counties of Nairobi, Mombasa, Kisumu and the densely populated western highlands areas. A list of sub-counties matching the numbers shown on the map is provided in Annex A.

\[\text{A shapefile of Kenya constituencies and wards as used by IEBC in the 2013 general elections was used [IEBC, 2015]. It had 290 constituencies and 1439 wards. These boundaries were counter-checked against maps obtained in County Integrated Development Plans (CIDP) of each of the 47 counties. According to the CIDPs and other official publications of each county, all except Isiolo, Thatarka Nithi, Nyeri, Nyamira and Kilifi counties that retained older constituency boundaries rather than revised boundaries suggested by the IEBC. Based on this information and using the 290 constituencies' shapefile, the sub-counties boundaries were delineated using the narrative in the CIDPs which was, in all cases, along ward boundaries. In total, we obtained 295 sub-counties in Kenya.}\]
2.4 Health service delivery and mapping of health facilities

The health service delivery system in Kenya is guided by the KHSSP (2013-2017). The strategy is also aligned to the Kenya vision 2030 policy framework and other global health commitments such as the Millennium Development Goals, using a framework that is structured and comprehensive [KPMG, 2014]. In this system, health service delivery is shared between the county and national governments. The national government has responsibility for referral services while counties are responsible for three levels of care: community health services, primary care services and county referral services. In the devolved system, healthcare service delivery is organized in a four-tiered system which consists of:

- **Community health services**: comprises of all the community based activities that identify the cases that need to be managed at higher levels of the health sector.
- **Primary care services**: This level comprises of all dispensaries, health centers and maternity homes from providers.
- **County referral services**: This comprises of former level four and district hospitals in specific counties and are operated and managed by the county governments.
- **National referral services**: This level comprises of facilities that provide highly specialized services and includes all tertiary referral facilities.

The Ministry of Health maintains a master health facility list using information supplied from District Health Records Information Officers. This list is available online from http://ehealth.or.ke/facilities/ and was downloaded on 6th November 2015 [MoH, 2015]. In total, the master facility list had 6589 (63%) public health facilities and 3906 (37%) private facilities. The KEMRI-Wellcome Trust Research Programme also maintains a geocoded database of health facilities, which are periodically updated and contain information such as Facility Name; Administrative data (Province, district, division, location, sub-location); Facility type; Agency; Longitude and Latitude; EPI services (Y/N); ITN services (Y/N) and volume by month [Noor et al., 2004; Noor et al., 2009]. These databases were reconciled, checked for duplicates and other incorrect information and mapped (Figure 2.4).
Figure 2.4 A Kenya map showing the distribution of 7,087 public health facilities: Hospitals (142 Red), Health Centers (1208 blue) and Dispensary (5737 green).^{5}

Summary of Data cleaning: Public health facilities were first extracted from the MoH master facility list as those facilities owned by: Ministry of Health, Christian Health Association of Kenya, Community, Community Development, Humanitarian agencies, Kenya Episcopal Conference-Catholic Secretariat, Local Authority, Local Authority Trust Fund, Mission, NGOs, Other faith based, SUPKEM. Public facilities were identified as Dispensaries, District Hospitals, Health Centres, Hospitals, Other Hospitals, Medical Centres, Medical Clinics, Provincial General Hospitals, Sub district hospitals.

The MoH master facility was compared to the KEMRI/Wellcome Trust database, where 3892 matched in both name and master facility code while 4418 health facilities could not be matched. These contained 2068 from the Welcome trust database and 2352 from the updated master facility list. These two lists were then subjected to a rigorous exercise that included checking for unique facilities in either of the lists. There were 7237 public health facilities and 3905 private health facilities. Another list, provided by Population Services international was also obtained and after merging with the two, an additional 20 health facilities were added.

In the merged database, only 5157 were geocoded. A rapid cross-referencing exercise was implemented with other available digital sources to geo-code the master list. First, an online list maintained by the Development partners for Health in Kenya (DPHK) [Development Partners for Health in Kenya, 2015], was used. This website contains latitude and longitude information of facilities, with geolocated information provided by the MoH. As such, 1623 facilities were The coordinates were checked with health administrative boundary maps to locate those facilities that were in the wrong administrative boundary. In addition points along the coastline were checked using the GAUL 2008 coastline shape file. The Global lakes and Wetlands (GLWD) database developed by the World Wildlife Fund was used to ensure facilities were not located on water features. The geocoded list included some other facilities such as standalone VCT centers and health programs (53) which were excluded in the mapping. The final list mapped was 7,087. In the final public health facilities database, 7140 (98%) were geocoded.

^{5}Summary of Data cleaning: Public health facilities were first extracted from the MoH master facility list as those facilities owned by: Ministry of Health, Christian Health Association of Kenya, Community, Community Development, Humanitarian agencies, Kenya Episcopal Conference-Catholic Secretariat, Local Authority, Local Authority Trust Fund, Mission, NGOs, Other faith based, SUPKEM. Public facilities were identified as Dispensaries, District Hospitals, Health Centres, Hospitals, Other Hospitals, Medical Centres, Medical Clinics, Provincial General Hospitals, Sub district hospitals.

The MoH master facility was compared to the KEMRI/Wellcome Trust database, where 3892 matched in both name and master facility code while 4418 health facilities could not be matched. These contained 2068 from the Welcome trust database and 2352 from the updated master facility list. These two lists were then subjected to a rigorous exercise that included checking for unique facilities in either of the lists. There were 7237 public health facilities and 3905 private health facilities. Another list, provided by Population Services international was also obtained and after merging with the two, an additional 20 health facilities were added.

In the merged database, only 5157 were geocoded. A rapid cross-referencing exercise was implemented with other available digital sources to geo-code the master list. First, an online list maintained by the Development partners for Health in Kenya (DPHK) [Development Partners for Health in Kenya, 2015], was used. This website contains latitude and longitude information of facilities, with geolocated information provided by the MoH. As such, 1623 facilities were The coordinates were checked with health administrative boundary maps to locate those facilities that were in the wrong administrative boundary. In addition points along the coastline were checked using the GAUL 2008 coastline shape file. The Global lakes and Wetlands (GLWD) database developed by the World Wildlife Fund was used to ensure facilities were not located on water features. The geocoded list included some other facilities such as standalone VCT centers and health programs (53) which were excluded in the mapping. The final list mapped was 7,087. In the final public health facilities database, 7140 (98%) were geocoded.
Chapter 3: History of Malaria Control in Kenya

3.1 1990 to 1999

1990
Reports of use of larviciding with Reskol and HS Oil at Aldai, Mosop, Kilibwoni, and Tinderet Divisions of Nandi district to prevent epidemics

1991
Widespread CQ clinical failures across the country

1992
National plan of action designed with continued emphasis on case-management including use of CHWs and community promotion of ITN through BI sites through to 1997; national strategy defines strata of risk based on maps developed during 1960s: stable, epidemic, low risk and malaria free but not used to tailor interventions

BI sites located in 25 districts in Western and Nyanza provinces covering approximately 235 communities where malaria prevention gradually was introduced by DVBD and Division of Environmental Health

1993
Large-scale ITN trial in Kilifi, Coast Province among 53,000 people

1994
April Malaria Control Unit (MCU) was established within DVBD under Communicables diseases department

Operational plan included use of CHWs to promote ITN use through BI sites and presumptive treatment of uncomplicated malaria cases

More challenges of Epidemics in highlands were experienced parcially in: Nandi, Kericho, Uasin Gishu, Trans Nzoia, Kakamega, Kisii, Nyamira, Trans Mara, Narok, West Pokot and Turkana. High morbidity and mortality among all age groups were experienced.

1995
Permethrin impregnated nets trial against Bancroftain filariasis and malaria in Kwale, in Coast Province

1996
More than 50% of studies of CQ efficacy showed significant treatment failure rates nationwide

Large-scale ITN trial at Asembo & Gem in Nyanza Province among a population of 125,000 people

Trials on impregnated bednets for prevention of malaria in pregnancy were conducted in Bondo and Kilifi Districts

Integrated management of childhood illnesses (IMCI) introduced for first time in Bungoma as part of the Bungoma District Malaria Initiative (BDMI) that continued through to 2000
1997/1998 El Nino related epidemics nationwide notably in Kenyan highlands and arid and semi lowlands of northern Kenya with large, excess mortality leading to an emergency task force being established

East African Network for Monitoring Anti-malarial Treatment (EANMAT) sub-regional network of Ministries of Health and research agencies was established in 1997 and begins standardized testing of CQ, SP and AQ; in Kenya at 7 epidemiologically representative sites among other sites in East Africa

1998 CQ replaced with SP as first line treatment and national treatment guidelines developed accordingly

African Medical Research Foundation (AMREF) launched an Employer Based ITN scheme with commercial and industrial partners including several tourist companies and hotels, and others such as the Kenya Ports Authority, Bamburi and Simbarite cement industries, the Athi River Mining Company at Kaloleni, Umoja Rubber Company and the Kilifi and Vipingo Sisal Plantations, Muhoroni and Mumias Sugar companies, Malakisi Tobacco Company, Webuye Paper Mills

1999 Policy changed from weekly CQ to two doses of SP to pregnant women living in malaria endemic areas during their second and third trimester

Lambda-cyhalothrin IRS +/- ITNs distributed in epidemic prone of Gucha, Kisii, Nandi and Uasin Gishu districts

3.4 From 2000 – 2004

2000 MCU became a Division of Malaria Control (DOMC) at the same time staff who were housed at different office locations moved into a new office building which was part of the government and partner commitment to malaria control

Rapidly emerging SP resistance through experienced

The role of DVBD’s 48 field stations becomes more support to hospital services rather than surveillance vector control

Lambda-cyhalothrin IRS and ITNs expanded across epidemic prone highland districts

Focused Antenatal Care (FANC) approach to promote the health of pregnant women launched

2001 National Malaria Strategy 2001-2010 launched with an emphasis of scaling up distribution of ITNs, improving access to effective medicines for treatment and epidemic preparedness and response. Strategy provided evidence of different epidemiological strata but used only to defined epidemic prone areas for special intervention

National ITN strategy launched promoting an enabling environment for public private sector public sector partnership through retail sector and subsidized public sector distribution
UNICEF provided 700,000 ITNs to pregnant women living in 35 of 69 districts through ANC clinics at no cost to beneficiaries

kdr resistance mutations in vector populations remained low in Western and Coast regions

IMCI rolled out to include Vihiga, Embu and Kajiado followed by slow adoption in other districts supported by NGO partners through to 2009

2002

Larviciding pilots using Bacillus thuringiensis israelensis (Bti) at Mbita, Suba District protecting 8,000 people by ICIPE

Social marketing through retail sector and minimal subsidized cost recovery through special franchised kiosk launched and distributed 5 million ITN nationwide by 2004

Focused Ante-natal Care and Malaria in Pregnancy programme (FANC) scaled up nationwide to improve coverage of IPTp in additional 19 endemic prone districts

Malaria epidemic in western highlands with approximately 400 deaths (Nandi, Kericho, Uasin Gishu, Buret, Bomet, West Pokot, Trans Mara, Trans Nzoia, Kisii, Gucha and Nyamira) experienced

Annual single round seasonal focalised IRS using pyrethroids to prevent epidemics in 16 classified epidemic prone districts

2003

4.3% of children slept under an ITN and only 4% of pregnant women had received two doses of SP in their last pregnancy (April-August, Kenya National Demographic & Health Survey 2003)

Four epidemiologically representative sentinel districts (Kwale, Makueni, Bondo and Kisii/Gucha) established to provide core indicators for malaria control and prevention from random household surveys, case-management indicators from facilities and hospital admission data through to 2007 when they were stopped

2004

Global Fund approved Round 2 funding awarded USD 33,586,790 to support the use of nets by pregnant women and children under 5 years; scaling up IPTp in conjunction with reproductive health services; effective case management through the implementation of IMCI in conjunction with Child health; improve dispensing practices in retail outlets

The distribution of heavily subsidized nets through ANC and MCH clinics begins and this policy complimented the social marketing approach to ITN (nets and re-treatment kits) distribution approach which was conducted by PSI with support of the UK Government.

Consensus approval of policy change from SP to ACT (Artemether-Lumefantrine) for first line treatment of uncomplicated malaria. A transition was put in place. Treatment guidelines were Revised, and training training undertaken. However, commodities were procured until 2006 when GF round was secured
3.5 From 2005 – 2015

2005

Larviciding & ITN trials (Bti & Bacillus sphaericu (Bs)) in Kakamega & Vihiga through to 2007

Biological control, Bti, in Nyabondo and Kisii around brick making rural areas that continues through to 2006 covering circa 150,000 people under ICIE

Combinations of Bti and Bs piloted in Malindi, Coast Province by KEMRI Wellcome Trust

Heavily subsidized Supanet-branded long-lasting insecticidal nets (LLINs), Olyset and Permanet receives additional funding from UK Government

23.9% of children slept under an ITN (August, National PSI TRac Survey)

2006

Global Fund Round 4 funding awarded over USD 150 million through to 2010, although only 102 million spent; PMI begins country-level annual support circa USD 6 million USD in 2007, with a total investment of approximately 263 million by 2015.

July-September, mass free LLIN distribution of 3.4 million nets combined with measles vaccination catch-up campaign during first phase and not during second phase

ACT policy to replace SP implemented with AL drug supply, in-service training and production of new standard treatment guidelines, 32 months following 2004 decision

The “Advocacy and Public Awareness Campaign for Artemisinin Combination Therapy (ACT) in Kenya” plan was launched, including multimedia, print media advertisements, television, national and regional vernacular radio, community road shows, circa 100,000 posters and 500,000 brochures distributed nationwide; emphasis on AL free-of-charge.

April during Africa Malaria Day commemoration, President Mwai Kibaki launched the launched the new treatment policy under the campaign branded “Komesha Malaria, Okoa Maisha” ("Stop Malaria, Save a Lives")

IMCI partners also adopt the new treatment guidelines

Trial of IPT using SP+AQ among school children in Bondo, Nyanza Province

Biological control, Bti, of larvae in urban centres of Malindi began, expanding to peri-urban core in 2013 and by 2016 covered 400,000 people in urban and rural areas around Malindi as part Integrated Vector Management (IVM)

2007

38.8% of children slept under an ITN and 12.5% of women reported taking at least two doses of SP in their last pregnancy (Klis 2007)

31.6% of children slept under an ITN (September, National PSI Trac Household Survey)

RTS,S/AS01E malaria vaccine trial in Kilifi, Siaya and Kisumu Districts starts
Malezi Bora weeks launched by Ministry of Public Health as door-to-door campaigns on broad child health issues, including malaria messages

National Guidelines for laboratory diagnosis of malaria developed and launched

A more systematic approach to pyrethroid IRS each year in April, targeting circa 1.2 million households, covering a population of 3.8 million people, 97% operational coverage, in 16 epidemic prone districts

MENTOR Initiative started IRS in Tana River and Garissa Districts using pyrethroids using 1493 trained volunteers covering 36,337 households

EANMAT regional, sentinel drug sensitivity testing programme ends

December-March 2008, post-election violence disrupts basic health services and malaria control

2008

IRS continues at scale in 14 epidemic prone districts. However, 2 of the epidemic prone (Nandi North and South) and one endemic District (Rachuonyo) undertook intensive IRS supported by PMI. Rachuonyo was adopted as part of trial to determine the added value of combining IRS with LLIN in endemic regions

Mass re-treat campaign in October for nets using a longer lasting retreatment kits to convert 1.9 million nets owned by communities then to long lasting while 270,000 disused nets were replaced

47% of children slept under an ITN and 15% of women reported taking at least two doses of SP during their last pregnancy (KDHS 2008-2009)

Evidence of declining malaria admissions in Coast province but not in areas surrounding Lake Victoria since 2000. however, there was evidence of in mortality reduction in Siaya

Trial of delivery of ITNs through school children in Tana River

National school-based malaria surveillance continued through to 2013

2009

Malaria Programme Review undertaken to prepare for new eight year strategic plan

National Malaria Strategy launched with a vision of a malaria free Kenya where the Goal was have reduced morbidity and mortality caused by malaria in the various epidemiological zones by two-thirds of the 2007/08 level by 2017; for the first time all intervention recommendations were based on malaria prevalence in the county

IPTp intervention using SP was restricted only to areas of coast endemic and Lake Victoria regions

Integrated Vector Management (IVM) policy guidelines developed to encompass a range of disease vectors and control methods
Revised case-management guidelines that promote Test, Treat & Track (TTT) leading to expansion of diagnostic capacities nationwide including use of Rapid Diagnostic Tests (RDTs) for all age groups and in all malaria transmission settings

32.6% of children slept under an ITN (January-March, National Financial Services Deepening Household Survey)

2010

August, Kenya adopts new constitution that radically devolved management of health service delivery to 47 County Governments

Blanket IRS in 16 epidemic prone districts stops and strategy changes to IRS only in epidemic foci detected

Three stable endemic sub-counties (Ranchonyo, Migori and Nyando included in pyrethroid-based IRS covering circa 2.2 million people

Since 2008 circa 5 million LLIN distributed through routine ANC/CWC clinics

42% of children slept under an ITN and 26% of pregnant women reported taking at least 2 doses of SP their last pregnancy(KMIS 2010)

August, AMFm quality assured ACTs through private sector launched through to 2011 with Global Fund support

Treatment policy further revised to recommend diagnosis before treatment and dihydroartemisinin-piperaquine (DHA-PPQ) for the second-line treatment, and the use of AL in the second and the third trimester of pregnancy across all weight bands

AL dispersible tablets introduced into Kenya Public Health Sector

Step-wise in-service training reached 5,000 health workers for new malaria case-management 3T guidelines, provided with printed copies and wall charts, completed in 2013

Bi-annual national health facility Quality of Care continued through to 2015 totalling 10 surveys

2011

Focalised IRS continued targeting 12 high risk highland epidemic prone counties using pyrethroids

Endemic counties (Ranchuonyo, Migori and Nyando) continue pyrethroid-based IRS where the entire Homa Bay County was included

High levels of pyrethroid and DDT resistance detected in Bondo, Ranchuonyo, Nyando, Busia, Kisumu, Siaya, Homa Bay, Migori, Teso counties; no evidence of resistance to Bendiocarb (carbamate) or malathion (organo-phosphate)

Trial of screening + treatment with AL among school children at 160 schools in Kwale County, Coast region

Free mass LLIN distributions begins in Nyanza and Western regions

2012

Global Fund approved Round 10 funding where malaria component was awarded USD138 million through to 2017
mRDT implementation plan was developed with roll out targeted initially in low transmission districts

AL and RDT supply transitions from push-pull combination to entirely pull system from the central medical stores to counties based on their estimated requirements

mRDTs completely rolled out nationwide in public sector

July, epidemic of malaria in North Pokot

December, completion of mass free LLIN distributions in target areas in Nyanza, Western, Coast regions and the epidemic prone counties in Rift Valley region (Trans Nzoia, Bomet, Kericho, Nandi, Uasin Gishu, West Pokot, Transmara and Loima), delivering circa 10.6 million nets in total

Case management policy revised to recommended parenteral artesunate for pre-referral and severe malaria treatment while quinine remained recommended treatment only in the first trimester of the pregnancy

Medical practitioners, Pharmacy and Poisons Board approved in November the use of AL by community health workers

Pyrethroid resistance among An. gambiae s.l and An. funestus populations in Bondo, Siaya, Busia, Nyando, Bungona and Homa Bay; however, susceptible to Bendiocarb

An, gambiae sl populations 100% sensitive to DDT and Fenitrothion. Bendiocarb sensitive in Kwale and Kilifi counties but resistance shown in Taveta County, three and four of 8 sentinel sites showed reduced sensitivity to deltamethrin and lambda cyhalothrin respectively

2013

August, health functions fully devolved to 47 County governments with full responsibility for design, priorities, commodity procurement, staffing and monitoring/ evaluation of health sector service delivery

In the quest for insecticides resistance management and in conformity to WHO guidelines for using non pyrethroids in areas where LLIN coverage is high, IRS with pyrethroids was suspended

Fire in January at Kenya medical supplies Agency stores destroys over 4 million RDTs resulting in major stock outs

MSAT trial of three rounds where target populations were screened with RDTs and treated DHA-piperaquine treatment among 30,000 people in Gem, Karemo & Siaya of Siaya County, Nyanza Province

Malaria surveillance curriculum developed for health workers

DHA-PPQ had not been distributed to facilities despite policy change, through to 2016, and parental artesunate had only been supplied on a very limited scale

Division of Malaria Control, becomes Malaria Control Unit again under the Division of Communicable Disease Prevention and Control
UK Government support to malaria in Kenya comes to an end, since 2000 they had provided circa 15 million USD per annum to the national strategic plan.

Integrated Community case management of childhood illness (iCCM) plan of action launched with a component for CHWs to diagnoses malaria with an mRDT and treat with AL at household levels.

Pilot trial of iCCM in Bondo country including malaria case-management at household levels.

Artesunate replaces quinine as drug policy recommendation for severe and complicated malaria.

First detailed national malaria control and epidemiological profile launched.

2014

42% of children slept under an ITN (May-June, PSI TRac National Household Survey).

54% of children slept under an ITN and 15% of pregnant women reported taking at least 2 doses of SP, and 10% 3 doses and about 30% of women received 1 or more doses of IPTp (KDHS 2014-2015).

LLIN distribution catch-up campaign, first phase began September in Migori launched by President and then in, Homa Bay, Kisumu, Siaya and Vihiga in 2014 distributing circa 3 million nets.

LLIN distribution second phase began in November in West Pokot attributing 350,000 nets.

Pyrethroid resistance remains high, but An. gambiae populations remain susceptible to Bendiocarb and Malathion at sentinel sites located in counties of Western and Nyanza. The 24 hour mortality of less than 50% among An. gambiae and An. funestus populations to deltamethrin and permethrin were recorded in Siaya, Homa Bay, Kisumu and Migori; 75-80% mortality rates resistance among An. gambiae in Siaya to Bendiocarb.

Circa 6,000 private and public health workers training in TTT case-management guidelines.

CCM with test & Rx rolled out in Western/Nyanza.

2015

Mass LLIN distribution Phase 3 completed by June distributing 2.8 million nets in Uasin Gishu, Nandi, Kericho, Narok and Bomet.

Mass LLIN distribution Phase 4 was completed by September distributing 2.6 million nets in Trans-Nzoia, Mombasa, Lamu, Tana River, Taita Taveta, Kilifi, and Kwale.

Mass LLIN distribution Phase 5 was completed by December distributing 3.8 million nets in Kakamega, Kisii, Nyamira, Bungoma, and Busia Counties.

56% of children slept under an ITN and 22% of pregnant women reported taking at least three doses of SP after quickening, 38% of women in endemic focus areas (KMIS 2015).
Over 10,000 health workers from private and public sectors received in-service training in TTT case management policy

Over 3,000 health workers from 13 epidemic prone and seasonal transmission sub-counties trained in Malaria Surveillance and Epidemic Preparedness

Global Fund comes up with the New Funding Model and The NMCP is asked to re-programme its funds (Round10) with an additional USD 25 million; the total grant comes to USD 68.4 million.

2016

Insecticide resistance management strategy and plan developed through to 2018

In May 2016, IPTp strategy revised prevention to a minimum 3 doses of SP every four weeks after quickening
Chapter 4: Mapping Malaria Risk

4.1 Previous mapping of malaria risk in Kenya

The use of malaria risk mapping to guide interventions in Kenya began during the 1990s [MOH, 1992], based on maps of climate associated risk developed in the 1950s [Butler, 1959]. However, it was not until the launch of the National Malaria Strategy 2009-2017 [DOMC, 2009] that a more empirical basis for targeting different mixes of interventions was proposed based upon malaria prevalence by district [Noor et al., 2009] to accelerate progress toward a “malaria free” Kenya. At the time Kenya represented one of very few sub-Saharan African countries with a strategic plan based on strong epidemiological stratification that allowed for the vast differences in the sub-national risks of malaria [Omumbo et al., 2013].

Figure 4.1 The first representation of the cartography of malaria risk developed from information on length of transmission and seasonality of malaria [Butler 1959].
an early recognition that all was not equal across the country. This map was used for a further 20+ years and featured in descriptions of national malaria risk in the 1970s [Roberts, 1974], who also attempted to use topography and climate to classify areas of the country into endemicity zones based on best approximations of spleen rates in children aged 2-9 years. This map was used for the formulation of Kenya’s malaria plan in 1992 [MoH 1992]. However, other than a recognition of the epidemic potential of the Kenyan highlands, there were few attempts to stratify control measures based on the country’s diverse malaria ecology.

It wasn’t until the mid-1990s, with the launch of the MARA initiative [Snow et al. 1996], that empirical malariometric data was used to map a revised cartography of malaria risk in Kenya [Snow et al. 1998; Omumbo et al. 1998]. The 1990s were a decade of unprecedented epidemics across Kenya and as such strategic plans developed during the early 2000s promoted a universal set of recommendations, with the exception of epidemic early warning systems in the Kenyan highlands. In 2009, a malaria risk map for Kenya was developed based on 2682 parasite surveys undertaken between 1975 and 2009 and using modern statistical approaches for interpolating survey data collected in different places at different times [Noor et al. 2009]. The map was based on the largest parasite survey data for a single country in the SSA region and included data from the Kenya Malaria Indicator Surveys (KMIS) of 2007 and 2010.

With the publication of this map of the prevalence of *P. falciparum* in 2009, Kenya led the way as one of the first countries in sub-Saharan Africa to develop a formal sub-national framework of “suites of control packages” using empirical data on malaria transmission (Figure 4.2), serving as a platform to single out the 16 most intractable districts around Lake Victoria for special, concerted interventions to significantly reduce their endemicity. This map was updated in 2012 when the first comprehensive malaria epidemiological and control profile was developed [Noor et al. 2013] and was used to stratify counties into varying levels of average malaria endemicity to the planning of devolved governance in Kenya in 2013 (Figure 4.3).

Since then, the KEMRI-Wellcome Trust/INFORM programme has continued to work with the NMCP to update information on malaria prevalence nationwide through school surveys, providing technical support during the KMIS 2015 and assembling evidence from various research groups across the country. The present profile, therefore, provides an opportunity to update and review the levels of malaria risk nationwide and by County. It also improves on the 2012 profile with the presentation of malaria risk and intervention coverage by sub-county to support within County decision making.
Figure 4.2A 2009 malaria endemicity map of estimated *P. falciparum* prevalence among children 2-10 years of age (PfPR2-10) in Kenya [Noor et al 2009] showing a suit of interventions by transmission zone developed for the Kenya National Strategic Plans for Malaria 2009-2017 [NMCP 2009].

![Figure 4.2A](image)

Figure 4.3 A County malaria endemicity map based on population adjusted estimates of (PfPR2-10) showing five transmission zones [Noor et al 2012]. Low risk = 10 counties, 13.4 million population in 2015; Seasonal = 14 counties, 10.1 million population in 2015; Highland = 10 counties, 9.1 million population in 2015 ; Coastal endemic = 5 counties, 3.7 million population in 2015 ;Lake endemic = 8 counties, 9.4 million population in 2015.

![Figure 4.3](image)
4.2 Mapping \textit{P. falciparum} malaria risk from 2000-2015

4.2.1 Parasite prevalence data

Community-based surveys of malaria parasite prevalence have become the main source of data for mapping malaria transmission intensity [Snow et al. 2015a]. For Kenya, the data used in the 2012 profile [Noor et al. 2012] were updated from a variety of sources including peer-reviewed journals, international and national ministry of health and academic archives, personal correspondence and more recent national household and school sample surveys. Methods used to identify, extract and geo-code survey reports are presented elsewhere [Snow et al. 2015a].

Of the assembled data, inclusion was restricted to all surveys undertaken from January 1980 with a sample size of 10 or more individuals examined for malaria infection. Three survey sites could not be geo-located and 19 had sample sizes less than 10 individuals. 54 surveys were undertaken on Islands off Lamu on the Coast or Suba/Homa Bay in Lake Victoria and for the purposes of continuous spatial modelling these were modelled separately. The remaining data used for mapping malaria consisted of 4862 (Figure 4.4) surveys at 3684 unique locations (Figure 4.5a & b). This assembly of survey data in time and space, represents one of the largest of any country in Africa and includes national community/school surveys from 1980-1984 conducted by the Division of Vector Borne Diseases (DVBD); MIS 2007; National school surveys 2009/10; MIS 2010; partial national schools survey 2014; and the MIS 2015. Despite repeated attempts, it was not possible to obtain the malaria infection data collected as part of the MOH/UNICEF nutritional survey of 2010. Of the 4862 survey prevalence measures, 3274 used microscopy alone; 953 used RDTs alone; 634 used RDTs confirmed by microscopy; and one used microscopy confirmed by PCR.

Figure 4.4 The frequency of communities surveyed for malaria infection between 1980 and 2015 (4862 surveys in 3684 unique locations)

At 1926 survey/time specific sites between 1980 and 2015, 183,643 individuals were examined using microscopy, RDTs confirmed by microscopy or microscopy confirmed using PCR to determine the malaria parasite species. Of those surveyed 32,348 were infected with \textit{P. falciparum}, 2160 with \textit{P. malariae} and 792 with \textit{P. ovale}. There were four cases of \textit{P. vivax} described at Nganja (Kwale) [Sutherland et al., 2011] and Asembo Bay (Siaya) [KEMRI-CDC 2015, unpublished data]. While there is an incredibly low likelihood of \textit{P. vivax} in Kenya, the red cell duffy-negative protection among people in Nyanza and Coast is not completely refractory [Ryan et al., 2007]. Of all infections
detected the majority were *P. falciparum* (92%), followed by *P. malariae* (6%) and *P. ovale* (2%). All data assembled is provided to the NMCP accompanying this report, for future use and updating.

Figure 4.5 The locations of communities surveyed for malaria infection between 1980 and 2015 (4862 surveys in 3684 unique locations) **a)** highest \(PfPR_{2-10} \) values on top; **b)** lowest \(PfPR_{2-10} \) values on top.

4.2.2 Geostatistical modelling of *P. falciparum* prevalence

To develop continuous malaria risk maps from the community parasite survey data, geostatistical methods were used to interpolate the observed parasite prevalence from sampled locations in space and time to provide predictions at locations and times where data do not exist. These methods operate under Tobler’s First Law of Geography, which states that things that are closer in space and time are more similar than those more spatially and temporally distal [Tobler, 1970]. When applied within a Bayesian inference framework, these methods are referred to as model-based geostatistical (MBG) methods [Diggle et al 1998]. Bayesian inference allows for better use of sparse data and the application of prior knowledge of an outcome in an iterative process that is useful for robust estimation of uncertainties around the mean estimates of the outcome variable.

The procedures used to model and validate the transformation of empirical *P. falciparum* parasite prevalence data to continuous predictions of age-corrected mean prevalence in children aged 2-10 years (\(PfPR_{2-10} \)) are provided elsewhere [Noor et al., 2014]. In brief, information from available age-corrected survey data (sample size and numbers positive) at known locations (longitude and latitude) and times (year) all data assembled from 1980-2014 were used together with a minimal set of conservative, long-term covariates traditionally used in vector-borne disease mapping. The data were used within a Bayesian hierarchical space-time model, implemented through an adapted Stochastic Partial Differential Equations (SPDE) approach using Integrated Nested Laplace Approximations (INLA) for inference [R-INLA 2013; Rue et al 2009] to produce continuous maps of \(PfPR_{2-10} \) for 2008, 2012 and 2015 at 1 x 1 spatial resolutions. See Annex B for methodological details.

The environmental covariates whose relationship with \(PfPR_{2-10} \) was examined were rainfall, vegetation, temperature suitability index and urbanization all of which were found to have a statistically significant relationship with malaria prevalence and were included in the MBG model.
Figure 4.6 Maps of PfPR$_{2-10}$ at 1 × 1 km spatial in Kenya in a) 2000 b) 2005; c) 2010; and d) 2015.
Figure 4.7 Maps of population adjusted $P_fPR_{2,10}$ (PA $P_fPR_{2,10}$) at 1×1 km spatial by sub-county in Kenya in a) 2000 b) 2005; c) 2010; and d) 2015.
Figure 4.8 Changing population at risk of malaria by PfPR$_{2.10}$ endemicity from 2000-2015: a) count b) percentage
4.3 Mapping the distribution of vectors

The first map of the Anopheles vectors in Kenya was published nearly 40 years ago and shows the distribution of the An. gambiae complex and An. funestus [Roberts, 1974]. A national inventory of dominant malaria vectors was developed in 2009 covering largely only members of the An. gambiae and An. funestus complexes [Okara et al. 2010] and this provisional assembly of data was used to show the distribution of dominant vectors in the National Insecticide Resistance Management Strategy 2015-2018 [NMCP, 2015]. This has been significantly updated through a more detailed search of historical archives, graduate and post-graduate theses, grey literature and published sources, with increased documentation of potential secondary vectors. Full details of the data assembly, geo-coding methods and classifications of species according to their role in malaria transmission are provided elsewhere [Snow et al. 2015b]. The database has been arranged as a site-specific, referenced inventory to capture details of species identification recorded since the earliest surveys in 1900 through to the latest records in 2014. The full digital PDF library, database and bibliography accompanies this report.

From each identified report, data extraction included whether a species was identified at a given site, methods used to capture adults or larvae and methods used to speciate each anopheline collection. “Y” was recorded if species was identified and “N” was only recorded when the true absence of the species was reported. The database is therefore one of species presence, not absence and nor proportional presence of various vectors. The final database contained 1028 site/time specific reports of anopheline vectors occurring in Kenya between 1900 and 2014 for which coordinates were available. Geo-location data for 7 (0.68%) survey sites were unavailable from all accessible sources. The database includes records from some of the earliest national inventories undertaken during the 1930s [Evans & Symes, 1937]; more recent national mosquito surveys done by Ochieng and colleagues from 2007 to 2012 [Ochieng et al., 2013] for a mosquito-borne arbovirus study in Kenya; and resistance surveillance sites managed by the NMCP and its partners. Since January 2005, there have been 440 sites surveyed in Kenya.

Major malaria vectors have never been recorded in Kitui county, while in Bomet, Elgeyo Marakwet, Laikipia, Mandera, Meru, Nyandarua and West Pokot counties, no malaria vectors have ever been described. Although there has been a substantial number of vector surveys since 2005, the precise detection of sibling species using PCR has not been as prolific as previous vector sampling surveys. Among 502 sites where An. gambiae s.l have been reported since 2000, 105 (21%) have not used molecular techniques to define the sibling species. There are no definitions of An. gambiae sibling species in Garissa, Isiolo, Mombasa, Nyamira, Samburu, Uasin Gishu and Wajir. Where sibling species have been distinguished, An. arabiensis and An. gambiae s.s. appear to be sympatric in their distribution, however, there is evidence that An. arabiensis has, with time, begun to displace An. gambiae s.s. as the more dominant vector where both coincide. There have been few attempts to distinguish the s.s sibling species into M forms, S forms or An. coluzzii. Where records exist, the M form has been recorded in Kilifi and Kwale counties in the Coast region and Siaya and Kisumu counties in Nyanza. The S form has never been described in Kenya.
An. merus has a distribution largely within a 25 km inland extent from the Kenyan coast and is an important secondary vector within its range. An. quadriannulatus has been identified in Kenya but is not a malaria vector. Molecular characterisation of the members of the An. funestus complex in Kenya has only recently been possible [Kamau et al., 2002], therefore where An. funestus has been reported we have assumed these are predominantly An. funestus s.s. However there have been multiple reports of An. rivulorum from the Funestus complex and are regarded as a potential vector for malaria in Kenya [Kamau et al., 2002; Kamau et al., 2003; Kawada et al., 2012]. The presence of the An. gambiae complex and the An. funestus group are sympatric across the entire county, except in two counties namely Narok and Tharaka Nithi where An. funestus was not recorded. An. pharoensis has been described in all central, eastern Nyanza and Western regions in Kenya. Although an important vector in Egypt and Sudan, and previously thought to transmit malaria during the 1940s in Kenya [Garnham, 1945], the precise role of this vector in malaria transmission today in Kenya is poorly described. An. nili has been recorded in only a few locations scattered throughout the country, at 26 sites along the coast, the Taveta area, Thika, the Mwea Tebere Rice Irrigation Scheme, Kaimosi Forest in Vihiga County, and Trans Nzoia. The precise role of this vector in malaria transmission in Kenya is poorly described. An. coustani has been implicated as a potential vector in Taveta [Mwangangi et al., 2013], although not unambiguously implicated in human infections and therefore not currently regarded as a secondary vector in Kenya (M Coetzee, personal communication). An. moucheti has only been described in Mwea rice irrigation scheme in Kirinyaga county [Muturi et al. 2008]. It is not clear whether it plays any role in transmission of malaria in the area. An. hancocki has never been described in Kenya.
Figure 4.10 The distribution of dominant vector species in Kenya

An. gambiae ss

An. arabiensis

An. merus

An. funestus
Figure 4.11 Recorded species identifications across all surveys by County

Records of 41 other anopheline species in Kenya, either non-vectors or considered incidental vectors of malaria since 1900

Data in space and time related to vector resistance that have been carefully curated, validated and mapped by the IRBase initiative [IRBase; Knox et al., 2014] but were not assembled for this report although their availability is described in Chapter 3. However, it should be noted that resistance to pyrethroids and other classes of insecticides has now been recorded in almost all high burden counties (Chapter 3).
Chapter 5: Mapping of Vector Control Interventions

5.1 The scale up of vector control in Kenya

In 2000 the Ministry of Health (MoH) and partners developed an ITN strategy paper in which various approaches to scale up ITNs were outlined to reach a target of 60% coverage of populations at risk by 2005 [MoH, 2001]. Since then, several mechanisms for ITN distribution to populations at risk have been implemented. These included commercial distribution; social-marketing; routine subsidised and free distribution; and free mass distribution campaigns [Noor et al 2007; Noor et al 2010; Snow et al 2010].

At the beginning of this period, ITNs were accessed mainly from the private-for-profit retail sector while a few were distributed by research projects or non-governmental organisations (NGOs) [Shretta, 1999; Snow et al 2010]. This was followed by various attempts to socially market retail sector nets or heavily subsidized nets through clinics run by the government that met with only limited success in reaching the rural poor and ensuring maximal coverage of at risk populations [Noor et al., 2007: DOMC & MPHEG, 2007; Snow et al 2009]. However a free mass campaign was launched in 2006 using US$ 17 million from the GFATM round II funding to distribute 3.4 million nets free-of-charge to children under the age of five years within two weeks in July and two weeks in September 2006 [Noor et al 2007; 2010; Snow et al 2009]. Soon after, a study evaluating which of the delivery mechanisms was most effective in terms of increased coverage and equity in communities from four districts of different malaria ecologies was published [Noor et al 2007]. This study showed that free mass campaign was the most effective and equitable mechanism. A parallel study in the same communities also showed a significant impact of the nets in averting malaria mortality [Fegan et al 2007]. Using this evidence, the WHO consequently revised its ITN guidelines recommending the free distribution of nets to vulnerable individuals of all ages [WHO 2008].

Following this recommendation, PSI replaced its highly subsidised routine distribution targeting mothers of children and pregnant women for LLIN (Permanet®) to providing the nets free of charge using a grant of close to 50 million USD funding from DFID with supplementation from the GFATM [Snow et al 2009]. In 2008 a national campaign to re-treat untreated nets with K-O-TAB 1-2-3, and replace torn or damaged nets was undertaken in fifty five districts with funding support from DFID, WHO-Kenya and USAID and some support from GFATM Round II [Snow et al 2009]. A total of 1.93 million nets were re-treated and 207,290 torn nets were replaced [DOMC, 2008].

Between 2008 and the end of 2011, routine distributions of LLINs was provided through ANC and MCH clinics in priority districts. In 2011, mass, “catch-up” campaigns were re-launched starting in 2011 in Nyanza and Western. In December 2012, mass free LLIN distributions in target areas in Nyanza, Western, Coast provinces and the epidemic prone districts in Rift Valley province (Trans Nzoia, Bomet, Kericho, Nandi, Uasin Gishu, West Pokot, Transmara and Loima) were completed. LLIN distribution catch-up campaigns, began again in September 2014 in Migori, Homa Bay, Kisumu, Siaya, Vihiga and West Pokot. In June 2015, mass LLIN distribution in Uasin Gishu, Nandi, Kericho, Narok and Bomet; in September 2015 nets in Trans-Nzoia, Mombasa, Lamu, Tana River, Taita Taveta, Kilifi, and Kwale; and in December 2015 in Kakamega, Kisii, Nyamira, Bungoma, and Busia Counties. The mechanisms of ITN distribution used in each county since 2004 are illustrated in Figure 5.1.
5.2 The number of ITNs distributed in Kenya, 2004-2015

Over the period 2004 to 2015, approximately 50.2 million ITNs, of which almost 49 million were of the LLIN variety, were distributed in Kenya. The distribution was undertaken through the routine system that started in October 2004 (23.3 million nets) and the free mass campaigns on 2006, 2011-12 and 2014-2015 (26.9 million nets). The free mass campaigns of 2006 targeted 32 of the current 47 counties. Following the development of an empirical malaria risk map [Noor et al 2009], better targeting of the LLIN distributions (Figure 5.1) was implemented and subsequent campaigns were implemented in 25 counties. Between 2012 and 2015, over 23.8 million nets were distributed in Kenya through the two main channels. Over 50 million ITNs, of which 49 million were of the LLIN variety, have been distributed in Kenya from 2004 to 2015 (Figure 5.2). Among the highland epidemic, lake and coastal endemic zone that are targeted for universal coverage of LLIN, the fewest number of LLINs were distributed in Lamu and Tana River (Figure 5.3), although these counties also have relatively low population. Annual ITN distributions by sub-county in Kenya from 2004 to 2015 are presented in the maps shown in Figure 5.4.
Figure 5.2 Annual ITN distribution by mechanism and overall since 2004

Figure 5.3 Total ITN distributions in Kenya by County grouped by malaria endemicity from 2004-2015.
Figure 5.4: Annual ITN distribution by sub-county in Kenya from 2004 to 2015. Distribution of LLINs started in May 2005.
5.3 The coverage and use of vector control in Kenya

Typically, intervention coverage and use indicators are obtained from national household surveys that are designed to be precise at national and regional levels and rarely at lower levels such as counties. In Kenya, there have been several national household surveys designed to capture indicators of malaria intervention and/or prevalence. For this study, data from 6 national surveys implemented from 2003-2015 (Table 5.1) was used. Excluded were data from the household budget surveys of 2005-6 and the Financial Strength Deepening survey of 2010 [Noor et al 2012] because they had only a limited set of ITN use indicators. The PSI TRaC surveys of 2005, 2007 and 2014 were also not used as these were focused on specific implementation districts. The DHS 2014-15, was the first survey in Kenya specially designed to be representative by County for a number of key indicators, and allowed for sub-county modelled estimation of intervention coverage.

Sub-national modelling of intervention data was undertaken using spatial and spatial-temporal small area estimation (SAE) methods that handle the problem of making reliable estimates of a variable at preferred areal units under conditions where the information available for the variable, on its own, is not sufficient to make valid estimates, primarily because of sampling inadequacies [Rao et al., 2003; BIAS 2007]. The geo-coded national household survey data (Figure 5.5) was used to model national intervention indicators at county level for all the 6 households surveys and by sub-county using the combined DHS 2014-15 and MIS 2015 data. The indicators that have been estimated included: household ownership of at least one ITN; universal coverage of ITNs; and utilization of ITNs by the general population and among pregnant women. In addition access to IPTp and first line recommended treatment were analyzed and are presented in Chapters 6 and 7 respectively.

Table 5.1 Summary of survey data used for the analysis of intervention indicators

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling domain</td>
<td>8 provinces</td>
<td>8 provinces</td>
<td>8 provinces</td>
<td>8 provinces</td>
<td>47 counties</td>
<td>8 provinces</td>
</tr>
<tr>
<td>Number of counties</td>
<td>46</td>
<td>42</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Number of clusters</td>
<td>399</td>
<td>200</td>
<td>397</td>
<td>240</td>
<td>1,594</td>
<td>245</td>
</tr>
<tr>
<td>Number of households</td>
<td>8,543</td>
<td>6,818</td>
<td>9,033</td>
<td>6,308</td>
<td>36,430</td>
<td>6,481</td>
</tr>
<tr>
<td>Number of persons interviewed for ITN use</td>
<td>37,504</td>
<td>30,049</td>
<td>38,384</td>
<td>27,321</td>
<td>153,840</td>
<td>25,430</td>
</tr>
<tr>
<td>Number of pregnant women interviewed for ITN use</td>
<td>645</td>
<td>524</td>
<td>629</td>
<td>409</td>
<td>2,113</td>
<td>369</td>
</tr>
</tbody>
</table>

To analyse intervention coverage data, hierarchical Bayesian spatial and temporal SAE techniques using a geo-additive regression approach was used [Banerjee et al., 2004; Best et al., 2005]. This method uses survey data from a county/sub-county and neighborhood information from adjacent counties/sub-counties to smooth values at the county/sub-county. For ITN utilization, data was analyzed by all ages to measure universal coverage which is the intervention metric necessary when computing likely impacts on malaria transmission [Smith et al 2009; Griffin et al 2010]. See Annex C for details of the SAE methods.
5.3.1 Coverage and use of insecticide treated nets (ITNs)

Figure 5.5 Percentage of households with at least one ITN by county and survey year. For 2015, the data from the DHS 2014-15 and MIS 2015 were combined to produce both county and sub-county estimates.
Figure 5.6 Percentage of households with at least one ITN by county and malaria endemicity in 2015. Estimated ITN ownership for 2015 was computed using the combined DHS 2014-15 and MIS 2015.

County is predominantly in the highland epidemic zone with few parts experiencing seasonal transmission. **County is predominantly in the lake endemic zone with few parts in the highland epidemic zone.**
Figure 5.7 Percentage of households with universal ITN coverage (≤ 2 persons per ITN) by county and survey year. For 2015, the data from the DHS 2014-15 and MIS 2015 were combined to produce both county and sub-county estimates.
Figure 5.8 Percentage of households with universal ITN coverage (≤ 2 persons per ITN) by county and malaria endemicity in 2015. Estimated ITN ownership for 2015 was computed using the combined DHS 2014-15 and MIS 2015.

*County is predominantly in the highland epidemic zone with few parts experiencing seasonal transmission. **County is predominantly in the lake endemic zone with few parts in the highland epidemic zone.
Figure 5.9 Percentage of household population sleeping under ITN the night before survey by county and survey year. For 2015, the data from the DHS 2014-15 and MIS 2015 were combined to produce both county and sub-county estimates.
Figure 5.10 Percentage of household population sleeping under ITN the night before survey by county and malaria endemicity in 2015. Estimated ITN ownership for 2015 was computed using the combined DHS 2014-15 and MIS 2015.

*County is predominantly in the highland epidemic zone with few parts experiencing seasonal transmission. **County is predominantly in the lake endemic zone with few parts in the highland epidemic zone.

5.3.2 Coverage of indoor residual spraying (IRS)

Since the launch of the KNMS (2001–2010) the DOMC has focused IRS efforts in 12 “epidemic prone” counties and 3 endemic counties (Figure 5.11). The target was to annually spray 80% of households in these districts using lambda-cyhalothrin (ICON®) 6-8 weeks before the onset of the heavy rains usually May-August. IRS was previously seen as an epidemic response measure following appropriate signals from an early warning system. Since 2007 a more systematic annualized approach has been taken as an epidemic prevention activity rather than an epidemic response measure.

In the three counties of Homa Bay, Migori and part of Kisumu where malaria transmission has been perennial complete coverage with IRS began in 2010 (in Kisumu only Nyando district was targeted) as a pilot scheme to see if its combination with LLIN will bring down transmission rapidly. In the other 12 counties, IRS is targeted only at potential hotspots determined through weekly surveillance. There has been no IRS activities since 2013 following high resistance to pyrethroids and in the efforts of complying with WHO guidance on Insecticide resistance management.
Figure 5.11 Counties where indoor residual spraying (IRS) was targeted in Kenya since 2005.

Figure 5.12 Percentage of targeted housing structures covered in targeted areas during IRS implementations from 2005 to 2012.
Chapter 6: Prevention of Malaria in Pregnancy

Figure 6.1 Percentage of currently pregnant women who slept under an ITN the night prior to survey by county and survey year. Sample sizes were too small to analyse data by county using the MIS 2003. Reliable sub-county estimates were not possible for all the survey due to few observations at this level. Estimates related to pregnant women from household surveys are normally associated with higher margin of errors sub-nationally due to the small denominator of pregnant women.
Figure 6.2 Percentage of currently pregnant women who slept under an ITN the night prior to survey by county in 2015. Estimated ITN use among pregnant women for 2015 was computed using the combined DHS 2014-15 and MIS 2015. Estimates related to pregnant women from household surveys are normally associated with higher margin of errors sub-nationally due to the small denominator of pregnant women.

*County is predominantly in the highland epidemic zone with few parts experiencing seasonal transmission. **County is predominantly in the lake endemic zone with few parts in the highland epidemic zone.
Figure 6.3 Percentage of women who received at least two doses of IPTp during a pregnancy within the last two years. Sample sizes were too small to analyse data by county using the MIS 2003. Reliable sub-county estimates were not possible for all the survey due to few observations at this level. Estimates related to pregnant women from household surveys are normally associated with higher margin of errors sub nationally due to the small denominator of pregnant women.
Figure 6.4 Percentage of women who received at least two doses of IPTp during a pregnancy within the last two years. Estimated IPTp use among pregnant women for 2015 was computed using the combined DHS 2014-15 and MIS 2015. Estimates related to pregnant women from household surveys are normally associated with higher margin of errors sub nationally due to the small denominator of pregnant women.

*County is predominantly in the highland epidemic zone with few parts experiencing seasonal transmission. **County is predominantly in the lake endemic zone with few parts in the highland epidemic zone.
Chapter 7: Malaria Case Management

Following a massive therapeutic failure of chloroquine, sulphadoxine-pyrimethamine (SP) was adopted as the first line malaria treatment in 1998. By 2003, SP had also completely failed. In 2004, artemether lumefantrine (AL) was approved as the replacement for SP. The scale up of AL, however, only began in July 2006 [Amin et al 2007]. By 2012, RDTs were rolled out nationally and in 2013, the County began taking over the responsibility for provision of primary health care.

Figure 7.1 Percentage of children under age five years with fever in the two weeks prior to survey who sought treatment at an appropriate source (public and private health facilities, pharmacies and drug stores) by county and survey year. For 2015, the data from the DHS 2014-15 and MIS 2015 were combined to produce both county and sub-county estimates.
Figure 7.2 Percentage of children under age five years with fever in the two weeks prior to survey who were treated at an appropriate source (public and private health facilities, pharmacies and drug stores) in 2015 by county grouped according to malaria endemicity. The data from the DHS 2014-15 and MIS 2015 were combined to produce these estimates.

*County is predominantly in the highland epidemic zone with few parts experiencing seasonal transmission. **County is predominantly in the lake endemic zone with few parts in the highland epidemic zone.
Figure 7.3 Percentage of fevers among children age under five years treated with the recommended first line antimalarial drug among those treated for malaria by county and survey year. For 2015, the data from the DHS 2014-15 and MIS 2015 were combined to produce both county and sub-county estimates.
Figure 7.4 Percentage of fevers among children under the age of five years treated with the recommended first line antimalarial drug among those treated for malaria in 2015 by county grouped according to malaria endemicity. The data from the DHS 2014-15 and MIS 2015 were combined to produce these estimates.

*County is predominantly in the highland epidemic zone with few parts experiencing seasonal transmission. **County is predominantly in the lake endemic zone with few parts in the highland epidemic zone.
Chapter 8: Key Findings

8.1 Changing *P. falciparum* parasite prevalence
From a 2000 baseline, the estimated *P. falciparum* malaria infection prevalence in children 2 to below 10 years of age (*PfPR*_2-10) has reduced substantially. In 2000, 13.2% of Kenya’s population lived in areas where *PfPR*_2-10 was >50% and by 2015, on average, there were no areas of hyper or holo-endemic transmission (>50%*PfPR*_2-10). In contrast, population in areas of *PfPR*_2-10 was <1% or malaria free increased from 35.1% in 2000 to 53.6% in 2015. Malaria free areas were defined on the basis of temperature limits and therefore the proportion of population in this zone remained constant throughout. Not surprisingly, the largest absolute reductions in transmission was observed in the Lake endemic and Coastal regions, where malaria was naturally highest and where most intervention efforts were concentrated.

Despite these reductions, some of the gains made were undercut by the rapid increase in population. In addition, there were pockets within some counties where transmission has increased. Equally important is that most of the reductions in transmission in the hyper and holoendemic areas appears to be in the period 2000-2005, suggesting an natural transition from peak transmission, although major gains were also made across the board between 2005-2010. The pace of reduction seems lower in the period 2010-2015, where declines in transmission were mainly in the Lake endemic zone. For detailed with county changes in reference should be made to the county profiles.

As transmission declines, community parasite prevalence data become a less sensitive indicator for measuring progress. Many areas in Kenya are now under very low transmission and efforts must now be concentrated in the assembly of high quality and timely routine data to track the trends and compare with the intermittent community parasite survey data.

8.2 Progress in vector control interventions
Since 2004, over 50 million ITNs, of which nearly 49 million were of the LLIN variety, have been distributed in Kenya. Most of these distributions have occurred since 2011, following the change of LLIN strategy in 2009, whereby the free mass campaigns and routine distributions were targeted in malarious counties, instead of nationwide distributions. From the household survey data, household ownership of ITNs has risen considerably since 2003. Household ownership of 1 ITN by 2015 was above 70% in majority of targeted counties. However, universal coverage (1 LLIN per 2 persons) was between 40% to 50% in most targeted counties. Use of bed nets by household members was between 40% to 70% in the Lake and Coastal endemic counties. Therefore, although access to LLINs has improved substantially, universal coverage and use of bed nets remain relatively moderate and further efforts are require to reach the 100% target.

Beginning 2013, all IRS activities have ceased in Kenya, as the country was realigning the policy the WHO policy guidelines on Insecticides resistance management strategy where non Pyrethroids were recommended in areas of high LLIN coverage. Kenya has limited non-pyrethroids registered for public health use. By 2014 Pirimaphos methyl an organophosphate was registered use in IRS.

8.3 Prevention of malaria in pregnancy
There are often uncertainties around the estimations of interventions targeted at pregnant women because the denominator recorded during surveys is often relatively small. Nonetheless, use of LLINs among pregnant women seems to have increased since the MIS of 2007, and was between 50% and 90% in 2015 in the Lake and Coastal endemic counties. Interestingly, the proportion of women receiving at least two doses of SP for IPTp was generally higher in the Coastal endemic counties, expect in Kilifi where it was below 50%, compared to the Lake endemic counties where it was between 30% and 50% across all counties. Since the policy recommendation to administer IPTp
with each scheduled visit after quickening to ensure pregnant women receive a minimum of 3 doses was launched in 2016, there are no data to track the coverage of the revised indicator. However, given the relatively modest coverage of IPTp2, major efforts are required in reaching the target of universal coverage in the targeted counties.

8.4 Improvements in treatment seeking and access to recommended treatment

Treatment seeking for fever in the formal health sector has substantially increased since 2003 and by 2015, majority of counties had over 60% of children seeking treatment in either a clinic, pharmacy or drug store. Among those who sought treatment and were treated for malaria, majority also received the first-line recommended drug, AL. Only in Laikipia, Tharaka Nithi, Lamu and West Pokot was prescription of AL below 60%. It is unclear, however, what proportion of these febrile were confirmed to have malaria. In the MIS 2015, only 39% of children with fever in the last week had received a finger or heel prick [KMIS 2015].
References

25. IRBase: http://www.irrmapper.com

Annex A List of counties and sub-counties in Kenya

<table>
<thead>
<tr>
<th>Country</th>
<th>County</th>
<th>Sub County</th>
<th>Sub County Code</th>
<th>Map Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya</td>
<td>Baringo</td>
<td>Baringo Central</td>
<td>KEN001</td>
<td>1</td>
</tr>
<tr>
<td>Kenya</td>
<td>Baringo</td>
<td>Baringo North</td>
<td>KEN002</td>
<td>2</td>
</tr>
<tr>
<td>Kenya</td>
<td>Baringo</td>
<td>Baringo South</td>
<td>KEN003</td>
<td>3</td>
</tr>
<tr>
<td>Kenya</td>
<td>Baringo</td>
<td>Eldama Ravine</td>
<td>KEN004</td>
<td>4</td>
</tr>
<tr>
<td>Kenya</td>
<td>Baringo</td>
<td>Mogootio</td>
<td>KEN005</td>
<td>5</td>
</tr>
<tr>
<td>Kenya</td>
<td>Baringo</td>
<td>Tiaty</td>
<td>KEN006</td>
<td>6</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bomet</td>
<td>Bomet Central</td>
<td>KEN007</td>
<td>7</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bomet</td>
<td>Bomet East</td>
<td>KEN008</td>
<td>8</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bomet</td>
<td>Chepalungu</td>
<td>KEN009</td>
<td>9</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bomet</td>
<td>Konoin</td>
<td>KEN010</td>
<td>10</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bomet</td>
<td>Sotik</td>
<td>KEN011</td>
<td>11</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Bumula</td>
<td>KEN012</td>
<td>12</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Kabuchai</td>
<td>KEN013</td>
<td>13</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Kandyuyi</td>
<td>KEN014</td>
<td>14</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Kimili</td>
<td>KEN015</td>
<td>15</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Mt Elgon</td>
<td>KEN016</td>
<td>16</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Sirisia</td>
<td>KEN017</td>
<td>17</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Tongaren</td>
<td>KEN018</td>
<td>18</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Webuye East</td>
<td>KEN019</td>
<td>19</td>
</tr>
<tr>
<td>Kenya</td>
<td>Bungoma</td>
<td>Webuye West</td>
<td>KEN020</td>
<td>20</td>
</tr>
<tr>
<td>Kenya</td>
<td>Busia</td>
<td>Budalangi</td>
<td>KEN021</td>
<td>21</td>
</tr>
<tr>
<td>Kenya</td>
<td>Busia</td>
<td>Butula</td>
<td>KEN022</td>
<td>22</td>
</tr>
<tr>
<td>Kenya</td>
<td>Busia</td>
<td>Funyula</td>
<td>KEN023</td>
<td>23</td>
</tr>
<tr>
<td>Kenya</td>
<td>Busia</td>
<td>Matayos</td>
<td>KEN024</td>
<td>24</td>
</tr>
<tr>
<td>Kenya</td>
<td>Busia</td>
<td>Nambale</td>
<td>KEN025</td>
<td>25</td>
</tr>
<tr>
<td>Kenya</td>
<td>Busia</td>
<td>Teso North</td>
<td>KEN026</td>
<td>26</td>
</tr>
<tr>
<td>Kenya</td>
<td>Busia</td>
<td>Teso South</td>
<td>KEN027</td>
<td>27</td>
</tr>
<tr>
<td>Kenya</td>
<td>Elgeyo Marakwet</td>
<td>Keiyo North</td>
<td>KEN028</td>
<td>28</td>
</tr>
<tr>
<td>Kenya</td>
<td>Elgeyo Marakwet</td>
<td>Keiyo South</td>
<td>KEN029</td>
<td>29</td>
</tr>
<tr>
<td>Kenya</td>
<td>Elgeyo Marakwet</td>
<td>Marakwet East</td>
<td>KEN030</td>
<td>30</td>
</tr>
<tr>
<td>Kenya</td>
<td>Elgeyo Marakwet</td>
<td>Marakwet West</td>
<td>KEN031</td>
<td>31</td>
</tr>
<tr>
<td>Kenya</td>
<td>Embu</td>
<td>Manyatta</td>
<td>KEN032</td>
<td>32</td>
</tr>
<tr>
<td>Kenya</td>
<td>Embu</td>
<td>Mbeere North</td>
<td>KEN033</td>
<td>33</td>
</tr>
<tr>
<td>Kenya</td>
<td>Embu</td>
<td>Mbeere South</td>
<td>KEN034</td>
<td>34</td>
</tr>
<tr>
<td>Kenya</td>
<td>Embu</td>
<td>Runyenjes</td>
<td>KEN035</td>
<td>35</td>
</tr>
<tr>
<td>Kenya</td>
<td>Garissa</td>
<td>Balambala</td>
<td>KEN036</td>
<td>36</td>
</tr>
<tr>
<td>Kenya</td>
<td>Garissa</td>
<td>Dadaab</td>
<td>KEN037</td>
<td>37</td>
</tr>
<tr>
<td>Kenya</td>
<td>Garissa</td>
<td>Dujis</td>
<td>KEN038</td>
<td>38</td>
</tr>
<tr>
<td>Kenya</td>
<td>Garissa</td>
<td>Fali</td>
<td>KEN039</td>
<td>39</td>
</tr>
<tr>
<td>Kenya</td>
<td>Garissa</td>
<td>Ijara</td>
<td>KEN040</td>
<td>40</td>
</tr>
<tr>
<td>Kenya</td>
<td>Garissa</td>
<td>Lagdera</td>
<td>KEN041</td>
<td>41</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Homa Bay</td>
<td>KEN042</td>
<td>42</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Kabondo Kasipul</td>
<td>KEN043</td>
<td>43</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Karachuonyo</td>
<td>KEN044</td>
<td>44</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Kasipul</td>
<td>KEN045</td>
<td>45</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Mbita</td>
<td>KEN046</td>
<td>46</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Nohiwa</td>
<td>KEN047</td>
<td>47</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Rangwe</td>
<td>KEN048</td>
<td>48</td>
</tr>
<tr>
<td>Kenya</td>
<td>Homa Bay</td>
<td>Suba</td>
<td>KEN049</td>
<td>49</td>
</tr>
<tr>
<td>Kenya</td>
<td>Isiolo</td>
<td>Garbatulla</td>
<td>KEN050</td>
<td>50</td>
</tr>
<tr>
<td>Kenya</td>
<td>Isiolo</td>
<td>Isiolo</td>
<td>KEN051</td>
<td>51</td>
</tr>
<tr>
<td>Kenya</td>
<td>Isiolo</td>
<td>Merci</td>
<td>KEN052</td>
<td>52</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kajiado</td>
<td>Kajiado Central</td>
<td>KEN053</td>
<td>53</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kajiado</td>
<td>Kajiado East</td>
<td>KEN054</td>
<td>54</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kajiado</td>
<td>Kajiado North</td>
<td>KEN055</td>
<td>55</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kajiado</td>
<td>Kajiado South</td>
<td>KEN056</td>
<td>56</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kajiado</td>
<td>Kajiado West</td>
<td>KEN057</td>
<td>57</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Butere</td>
<td>KEN058</td>
<td>58</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Ikolomani</td>
<td>KEN059</td>
<td>59</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Khwisero</td>
<td>KEN060</td>
<td>60</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Likuyani</td>
<td>KEN061</td>
<td>61</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Lugari</td>
<td>KEN062</td>
<td>62</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Lurambi</td>
<td>KEN063</td>
<td>63</td>
</tr>
<tr>
<td>Country</td>
<td>Province</td>
<td>Sub-County</td>
<td>Code</td>
<td>County Number</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Malava</td>
<td>KEN64</td>
<td>64</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Matungu</td>
<td>KEN65</td>
<td>65</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Mumias East</td>
<td>KEN66</td>
<td>66</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Mumias West</td>
<td>KEN67</td>
<td>67</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Nakiholo</td>
<td>KEN68</td>
<td>68</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kakamega</td>
<td>Shinyalu</td>
<td>KEN69</td>
<td>69</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kericho</td>
<td>Buret</td>
<td>KEN70</td>
<td>70</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kericho</td>
<td>Kericho East</td>
<td>KEN71</td>
<td>71</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kericho</td>
<td>Kericho West</td>
<td>KEN72</td>
<td>72</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kericho</td>
<td>Kipkelion East</td>
<td>KEN73</td>
<td>73</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kericho</td>
<td>Kipkelion West</td>
<td>KEN74</td>
<td>74</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kericho</td>
<td>Sigowet</td>
<td>KEN75</td>
<td>75</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Gatundu North</td>
<td>KEN76</td>
<td>76</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Gatundu South</td>
<td>KEN77</td>
<td>77</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Githunguri</td>
<td>KEN78</td>
<td>78</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Juja</td>
<td>KEN79</td>
<td>79</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Kabete</td>
<td>KEN80</td>
<td>80</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Kiambaa</td>
<td>KEN81</td>
<td>81</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Kibiu</td>
<td>KEN82</td>
<td>82</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Kikuyu</td>
<td>KEN83</td>
<td>83</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Lari</td>
<td>KEN84</td>
<td>84</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Limuru</td>
<td>KEN85</td>
<td>85</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Ruiru</td>
<td>KEN86</td>
<td>86</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kimbou</td>
<td>Thika Town</td>
<td>KEN87</td>
<td>87</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kilifi</td>
<td>Ganze</td>
<td>KEN88</td>
<td>88</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kilifi</td>
<td>Kaloleni</td>
<td>KEN89</td>
<td>89</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kilifi</td>
<td>Kilifi</td>
<td>KEN90</td>
<td>90</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kilifi</td>
<td>Magarini</td>
<td>KEN91</td>
<td>91</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kilifi</td>
<td>Malindi</td>
<td>KEN92</td>
<td>92</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kilifi</td>
<td>Rabai</td>
<td>KEN93</td>
<td>93</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kirinyaga</td>
<td>Gichugu</td>
<td>KEN94</td>
<td>94</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kirinyaga</td>
<td>Kirinyaga Central</td>
<td>KEN95</td>
<td>95</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kirinyaga</td>
<td>Kirinyaga</td>
<td>KEN96</td>
<td>96</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kirinyaga</td>
<td>Nola</td>
<td>KEN97</td>
<td>97</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Bobasi</td>
<td>KEN98</td>
<td>98</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Bomachoge Borabu</td>
<td>KEN99</td>
<td>99</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Bomachoge Chache</td>
<td>KEN100</td>
<td>100</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Bonchari</td>
<td>KEN101</td>
<td>101</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Kitutu Chache North</td>
<td>KEN102</td>
<td>102</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Kitutu Chache South</td>
<td>KEN103</td>
<td>103</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Nysirabari Chache</td>
<td>KEN104</td>
<td>104</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>Nysirabari Masaba</td>
<td>KEN105</td>
<td>105</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisii</td>
<td>South Mugirango</td>
<td>KEN106</td>
<td>106</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisumu</td>
<td>Kisumu Central</td>
<td>KEN107</td>
<td>107</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisumu</td>
<td>Kisumu East</td>
<td>KEN108</td>
<td>108</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisumu</td>
<td>Kisumu West</td>
<td>KEN109</td>
<td>109</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisumu</td>
<td>Muhoroni</td>
<td>KEN110</td>
<td>110</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisumu</td>
<td>Nyakach</td>
<td>KEN111</td>
<td>111</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisumu</td>
<td>Nyando</td>
<td>KEN112</td>
<td>112</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kisumu</td>
<td>Seme</td>
<td>KEN113</td>
<td>113</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Kitui Central</td>
<td>KEN114</td>
<td>114</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Kitui East</td>
<td>KEN115</td>
<td>115</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Kitui Rural</td>
<td>KEN116</td>
<td>116</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Kitui South</td>
<td>KEN117</td>
<td>117</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Kitui West</td>
<td>KEN118</td>
<td>118</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Mwingi East</td>
<td>KEN119</td>
<td>119</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Mwingi North</td>
<td>KEN120</td>
<td>120</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kitui</td>
<td>Mwingi West</td>
<td>KEN121</td>
<td>121</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kwale</td>
<td>Kinango</td>
<td>KEN122</td>
<td>122</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kwale</td>
<td>Lunga Lunga</td>
<td>KEN123</td>
<td>123</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kwale</td>
<td>Matuga</td>
<td>KEN124</td>
<td>124</td>
</tr>
<tr>
<td>Kenya</td>
<td>Kwale</td>
<td>Msambweni</td>
<td>KEN125</td>
<td>125</td>
</tr>
<tr>
<td>Kenya</td>
<td>Lakiopia</td>
<td>Lakiopia East</td>
<td>KEN126</td>
<td>126</td>
</tr>
<tr>
<td>Kenya</td>
<td>Lakiopia</td>
<td>Lakiopia North</td>
<td>KEN127</td>
<td>127</td>
</tr>
<tr>
<td>Kenya</td>
<td>Lakiopia</td>
<td>Lakiopia West</td>
<td>KEN128</td>
<td>128</td>
</tr>
<tr>
<td>Kenya</td>
<td>Lamu</td>
<td>Lamu East</td>
<td>KEN129</td>
<td>129</td>
</tr>
<tr>
<td>Kenya</td>
<td>Lamu</td>
<td>Lamu West</td>
<td>KEN130</td>
<td>130</td>
</tr>
<tr>
<td>Kenya</td>
<td>Machakos</td>
<td>Kangundo</td>
<td>KEN131</td>
<td>131</td>
</tr>
<tr>
<td>Kenya</td>
<td>Machakos</td>
<td>Kathiani</td>
<td>KEN132</td>
<td>132</td>
</tr>
<tr>
<td>Kenya</td>
<td>Machakos</td>
<td>Machakos Town</td>
<td>KEN133</td>
<td>133</td>
</tr>
<tr>
<td>Kenya</td>
<td>Machakos</td>
<td>Masinga</td>
<td>KEN134</td>
<td>134</td>
</tr>
<tr>
<td>Country</td>
<td>Region</td>
<td>Constituency</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Kuresoi South</td>
<td>KEN206</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Molo</td>
<td>KEN207</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Naivasha</td>
<td>KEN208</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Nakuru Town East</td>
<td>KEN209</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Nakuru Town West</td>
<td>KEN210</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Njoro</td>
<td>KEN211</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Rongai</td>
<td>KEN212</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nakuru</td>
<td>Subukia</td>
<td>KEN213</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nandi</td>
<td>Aldai</td>
<td>KEN214</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nandi</td>
<td>Chesumei</td>
<td>KEN215</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nandi</td>
<td>Emgwen</td>
<td>KEN216</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nandi</td>
<td>Mosop</td>
<td>KEN217</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nandi</td>
<td>Nandi Hills</td>
<td>KEN218</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nandi</td>
<td>Tinderet</td>
<td>KEN219</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Narok</td>
<td>Emurua Dikirr</td>
<td>KEN220</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Narok</td>
<td>Kilgoris</td>
<td>KEN221</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Narok</td>
<td>Narok East</td>
<td>KEN222</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Narok</td>
<td>Narok North</td>
<td>KEN223</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Narok</td>
<td>Narok South</td>
<td>KEN224</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Narok</td>
<td>Narok West</td>
<td>KEN225</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyamira</td>
<td>Borabu</td>
<td>KEN226</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyamira</td>
<td>Masa North</td>
<td>KEN228</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyamira</td>
<td>Nyamira</td>
<td>KEN229</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyamira</td>
<td>Nyamira North</td>
<td>KEN230</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyandarua</td>
<td>Kinangop</td>
<td>KEN231</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyandarua</td>
<td>Kipipiri</td>
<td>KEN232</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyandarua</td>
<td>Ndaragwa</td>
<td>KEN233</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyandarua</td>
<td>Ol Jorok</td>
<td>KEN234</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyandarua</td>
<td>Ol Kalou</td>
<td>KEN235</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Kieni East</td>
<td>KEN236</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Kieni West</td>
<td>KEN237</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Mathira East</td>
<td>KEN238</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Mathira West</td>
<td>KEN239</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Mukurweini</td>
<td>KEN240</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Nyeri Town</td>
<td>KEN241</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Othaya</td>
<td>KEN242</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Nyeri</td>
<td>Tetu</td>
<td>KEN243</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Samburu</td>
<td>Samburu Central</td>
<td>KEN244</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Samburu</td>
<td>Samburu East</td>
<td>KEN245</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Samburu</td>
<td>Samburu North</td>
<td>KEN246</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Siaya</td>
<td>Alego Usonga</td>
<td>KEN247</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Siaya</td>
<td>Bondo</td>
<td>KEN248</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Siaya</td>
<td>Gem</td>
<td>KEN249</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Siaya</td>
<td>Rarieda</td>
<td>KEN250</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Siaya</td>
<td>Ugenya</td>
<td>KEN251</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Siaya</td>
<td>Ugunja</td>
<td>KEN252</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Taita Taveta</td>
<td>Mwatate</td>
<td>KEN253</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Taita Taveta</td>
<td>Taveta</td>
<td>KEN254</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Taita Taveta</td>
<td>Voi</td>
<td>KEN255</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Taita Taveta</td>
<td>Wundanyi</td>
<td>KEN256</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Tana River</td>
<td>Bura</td>
<td>KEN257</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Tana River</td>
<td>Galole</td>
<td>KEN258</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Tana River</td>
<td>Garsen</td>
<td>KEN259</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Tharaka Nithi</td>
<td>Maara</td>
<td>KEN260</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Tharaka Nithi</td>
<td>Meru South</td>
<td>KEN261</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Tharaka Nithi</td>
<td>Tharaka North</td>
<td>KEN262</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Tharaka Nithi</td>
<td>Tharaka South</td>
<td>KEN263</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Trans Nzoia</td>
<td>Cherangany</td>
<td>KEN264</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Trans Nzoia</td>
<td>Erdebes</td>
<td>KEN265</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Trans Nzoia</td>
<td>Kimumi</td>
<td>KEN266</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Trans Nzoia</td>
<td>Kwanza</td>
<td>KEN267</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Trans Nzoia</td>
<td>Saboti</td>
<td>KEN268</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Turkana</td>
<td>Loima</td>
<td>KEN269</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Turkana</td>
<td>Turkana Central</td>
<td>KEN270</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Turkana</td>
<td>Turkana East</td>
<td>KEN271</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Turkana</td>
<td>Turkana North</td>
<td>KEN272</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Turkana</td>
<td>Turkana South</td>
<td>KEN273</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Turkana</td>
<td>Turkana West</td>
<td>KEN274</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Uasin Gishu</td>
<td>Ainabkoi</td>
<td>KEN275</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Uasin Gishu</td>
<td>Kapseret</td>
<td>KEN276</td>
<td></td>
</tr>
<tr>
<td>County</td>
<td>Sub-County</td>
<td>Constituency</td>
<td>Code</td>
<td>Code</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Kenya</td>
<td>Uasin Gishu</td>
<td>Kesses</td>
<td>KEN277</td>
<td>277</td>
</tr>
<tr>
<td>Kenya</td>
<td>Uasin Gishu</td>
<td>Moiben</td>
<td>KEN278</td>
<td>278</td>
</tr>
<tr>
<td>Kenya</td>
<td>Uasin Gishu</td>
<td>Soy</td>
<td>KEN279</td>
<td>279</td>
</tr>
<tr>
<td>Kenya</td>
<td>Uasin Gishu</td>
<td>Turbo</td>
<td>KEN280</td>
<td>280</td>
</tr>
<tr>
<td>Kenya</td>
<td>Vihiga</td>
<td>Emuhaya</td>
<td>KEN281</td>
<td>281</td>
</tr>
<tr>
<td>Kenya</td>
<td>Vihiga</td>
<td>Hamisi</td>
<td>KEN282</td>
<td>282</td>
</tr>
<tr>
<td>Kenya</td>
<td>Vihiga</td>
<td>Luanda</td>
<td>KEN283</td>
<td>283</td>
</tr>
<tr>
<td>Kenya</td>
<td>Vihiga</td>
<td>Sabatia</td>
<td>KEN284</td>
<td>284</td>
</tr>
<tr>
<td>Kenya</td>
<td>Vihiga</td>
<td>Vihiga</td>
<td>KEN285</td>
<td>285</td>
</tr>
<tr>
<td>Kenya</td>
<td>Wajir</td>
<td>Eldas</td>
<td>KEN286</td>
<td>286</td>
</tr>
<tr>
<td>Kenya</td>
<td>Wajir</td>
<td>Tarbaj</td>
<td>KEN287</td>
<td>287</td>
</tr>
<tr>
<td>Kenya</td>
<td>Wajir</td>
<td>Wajir East</td>
<td>KEN288</td>
<td>288</td>
</tr>
<tr>
<td>Kenya</td>
<td>Wajir</td>
<td>Wajir North</td>
<td>KEN289</td>
<td>289</td>
</tr>
<tr>
<td>Kenya</td>
<td>Wajir</td>
<td>Wajir South</td>
<td>KEN290</td>
<td>290</td>
</tr>
<tr>
<td>Kenya</td>
<td>Wajir</td>
<td>Wajir West</td>
<td>KEN291</td>
<td>291</td>
</tr>
<tr>
<td>Kenya</td>
<td>West Pokot</td>
<td>North Pokot</td>
<td>KEN292</td>
<td>292</td>
</tr>
<tr>
<td>Kenya</td>
<td>West Pokot</td>
<td>Pokot Central</td>
<td>KEN293</td>
<td>293</td>
</tr>
<tr>
<td>Kenya</td>
<td>West Pokot</td>
<td>Pokot South</td>
<td>KEN294</td>
<td>294</td>
</tr>
<tr>
<td>Kenya</td>
<td>West Pokot</td>
<td>West Pokot</td>
<td>KEN295</td>
<td>295</td>
</tr>
</tbody>
</table>
Annex B Model-based geostatistical methods

Covariate processing and selection
A set of four geographical covariates were examined; Precipitation, Enhanced Vegetation Index (EVI), Temperature Suitability Index (TSI) and Urbanization. Precipitation and temperature rasters were derived from the monthly average rasters obtained from WorldClim website and were summarized to get the annual mean rainfall and annual mean temperature surfaces [1]. The EVI surface was derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) sensor imagery [2] while the urbanization surface was obtained from Global Rural Urban Mapping Project (GRUMP) [3].

The best generalized linear approach was used to generate minimum adequate set of covariates that have a significant effect on malaria to be used in geostatistical model. The function “bestglm” was used as implemented in R-Project version 3.0.1 package. This function selects the best subset of the input covariates for the GLM family [4]. Bayes Information Criterion (BIC) was used to select the significant covariates for the study because it has been shown that BIC often selects more parsimonious models than the AIC [4]. A uniform prior of the model of fixed size implemented in \(BIC_\gamma \) was used (Equation 1).

\[
BIC_\gamma = D + k \log(n) + 2 \gamma \log\binom{p}{k}
\]

(1)

This is where \(\gamma \) is an adjustable parameter, \(p \) is the number of possible input covariates not counting the bias or intercept term and \(k \) is the number of the parameters in the model[4].

SI 2: Space-time Bayesian Geo-statistical model
Bayesian hierarchical space-time model was implemented through Stochastic Partial Differential Equations (SPDE) approach using Integrated Nested Laplace Approximations (INLA) in R-INLA library to produce continuous malaria risk maps at 1 x 1 km spatial resolution and predicting to each year of study: 2000, 2005, 2010 and 2015 in Kenya [5]. This SPDE is formulated as a link between Gaussian random fields (GRFs) and the Gaussian Markov Random Fields (GMRFs) [6]. The spatio-temporal covariance function and the dense covariance matrix of the Gaussian field are replaced by a neighborhood structure and a sparse precision matrix respectively that together define a GMRF [7]. This finite-dimensional GMRF that substitutes infinite-dimensional GRF can be expressed as shown in Equation 2.
\[x(u) = \sum_{i=1}^{n} \psi_i(u)w_i \]

(2)

Here the \(\{w_i\} \) represents the Gaussian distributed weights and \(\Psi_i \) are piece-wise linear basis functions defined on a triangulation of the domain with \(n \) nodes defined as mesh. The solution of a Gaussian random field SPDE with Matern covariance function is represented as in Equation 3.

\[(k^2 - \Delta)^{n/2} x(u) = W(u), \ u \in \mathbb{R}^d, \ \alpha = \nu + d/2, \ k > 0, \ \nu > 0, \]

(3)

The innovation process \(W \) is the spatial Gaussian white noise and \(\Delta \) is the Laplacian. Finite element method (FEM), a numerical technique for solving partial differential equation, has been successfully used in solving the SPDE of this type [6]. This SPDE-formulation is motivated by computational benefits and also introduces a new class of spatial models [8]. In this SPDE approach, a non-stationary model was used and achieved by modifying the SPDE to obtain the GRFs with defined dependence structure and is expressed as

\[(k(u)^2 - \Delta)(\tau(u) x(u)) = w(u), \ u \in \Omega, \]

(4)

In the current version of the SPDE package as implemented in [6], a non-stationary model defined via spatial varying \(k(u) \) and \(\tau(u) \) is available for the case \(\alpha = 2 \). The \(\log k(u) \) and \(\log \tau(u) \) are defined as linear combinations of basis functions,

\[\log(\tau(u)) = b_0^\tau(u) + \sum_{k=1}^{p} b_k^\tau(u) \theta_k, \]

(5)

\[\log(k(u)) = b_0^k(u) + \sum_{k=1}^{p} b_k^k(u) \theta_k, \]

The precision matrix with parameter fields in the diagonal matrices is evaluated in a mesh as

\[T = \text{diag}(\tau(u)), \ K = \text{diag}(k(u)), \]

(6)

\[Q = T(K^2 C K^2 + K^2 G_1 + G_1^T K^2 + G_2) T \]

The space-time SPDE model used in this study is represented as show in equation 7. This is by constructing Kronecker product model by first starting with the basis function represented as

\[x(u,t) = \sum_k \psi_k(u,t) x_k \]

where each basis function is computed as a product of a spatial and a
temporal basis function, \(\psi_j(u, t) = \psi_j^u(u)\psi^t_j(t) \), thus the space-time SPDE\[6\]. The temporal aspect of the model is based on autoregressive (AR) second order process.

\[
\frac{\partial}{\partial t} (k(u)^2 - \Delta)^{\alpha/2} (x(u, t)) = w_i(u, t), \ (u, t) \in \Omega \times R
\] (7)

Therefore, the overall non-stationary hierarchical space-time binomial model of the prevalence of malaria was represented as the realization of a spatial-temporal process of malaria risk at the survey location, survey date, significant covariates at sampled locations and date, and the measurement error defined by the Gaussian white noise process. This can simply be denoted as,

\[
y(u_i, t) = z(u_i, t)\beta + \xi(u_i, t) + \epsilon(u_i, t)
\] (8)

This equation defines a hierarchical model where \(y(u_i, t) \) is a realization of a spatial-temporal process that represents risk of malaria at study location \(i = 1...n \), and year \(t,...,T \), \(z(u_i, t) = (z_1(u_i, t),...,z_p(u_i, t)) \) denotes the vector of \(p \) covariates for cluster \(u_i \) at time \(t_j \), \(\beta = (\beta_1,...,\beta_p)' \) is the coefficient vector, \(\epsilon(u_i, t) \sim N(0, \sigma^2_t) \) is the measurement error defined by the Gaussian white noise process that is uncorrelated both over space and time.

Validation

To assess the predictive performance of the model, the predicted prevalence of malaria in the surveyed locations was extracted and matched with the actual prevalence in surveyed data at the corresponding locations and time in a randomly sampled 10% holdout validation dataset using a sampling algorithm which declusters over space and time. Four performance indices were chosen to evaluate predictive performance and model fit: root-mean-square error (RMSE), mean prediction error (MPE), mean absolute prediction error (MAPE), and the correlation coefficient between the predicted and the observed values. The RMSE is simply the square-root of the mean of the squared difference between the posterior predicted mean and observed value and it is used to measure the accuracy of the model. The MPE provides a measure of the bias of the predictor, the MAPE provides a measure of the mean accuracy of individual predictions, and the correlation coefficient provides a measure of association between the observed data and prediction sets \[9\]. The correlation between the observed and predicted data was visualized in a scatter plot with a least-squares best fitting line.

Validation results
From the validation statistics, the RMSE was 0.177; MPE0.010; MAPE0.126 and the correlation coefficient 0.813. Maps of the posterior standard deviation from the mean can be found in Figure B1. The scatterplot for the observed and predicted prevalence is shown in Figure B1.

Figure B1 The correlation graph of observed PfPR and predicted PfPR for the 10% holdout dataset

References

6. Lindgren F, Rue H: Bayesian Spatial and Spatio-temporal Modelling with R-INLA.
Annex C Small Area Estimation Methods

Weighted probability estimates were modelled as binomial proportions, for each areal unit, where an underlying spatial correlation in the observations is assumed, and attributed to geographical adjacency between the areas of study. The spatially autocorrelated predictions are smoothened out by assigning an intrinsic conditional auto-regressive (CAR) prior to the spatially varying random effect in a Bayesian hierarchical modelling framework [Besag et al 1991].

Let $y^*_i | p_i \sim \text{Binomial}(m^*_i, p_i)$ for ith areal unit, where y^*_i the true prevalence rates is.

The true value of y^*_i can be estimated by taking care of spatial autocorrelation, a normally distributed intercept and also including area-level spatially correlated covariates in such a model frame as below:

$$\hat{y}_{p,i} = \bar{\alpha} + \beta \bar{x}_i + \bar{U}_i + \bar{V}_i$$ \hspace{1cm} (1)

Where $\bar{\alpha}$, \bar{x}_i, \bar{U}_i, \bar{V}_i are the intercept, spatially correlated covariate, spatially structured random effect and non-spatially structure random effect- for each study district, respectively.

However, a simpler version of model (1) was adopted as:

$$\hat{y}_{p,i} = \bar{U}_i + \bar{V}_i + \epsilon_i$$ \hspace{1cm} (2)

The spatial autocorrelation was computed through a neighbourhood structure that is defined as a function of distance between centroids of study districts. However, the neighbourhood structure can similarly be based on shared boundaries between study regions.

Random Effects and Model Priors

To make the resulting posterior distributions amenable to analytical integration in INLA, the probabilities of intervention coverage were modelled on a logit or signal scale, then back-transformed to coverage scale or to observation scale which is originally binomial. Thus the sampling model was:

$$\text{logit}(p_i) = \beta_0 + U_i + V_i$$ \hspace{1cm} (3)

The spatially smooth random effects U_i, for area i, are assigned a conditional normal distribution with mean given as the average of its neighbors and conditional variance inversely proportional to the number of neighbors of that particular area. This representation is given below in (4). For the non-spatially structured random effect V_i an independent normal distribution was assigned.

$$U_i | U_j, j \neq i \sim N \left(\frac{1}{k_i} \sum_{j \in \delta_i} U_j, \frac{\sigma_u^2}{k_i} \right)$$ \hspace{1cm} (4)

$$V_i \sim \text{iid } N(0, \sigma_V^2)$$

U_i, U_j are spatially smooth effect for the ith and jth neighbors while δ_i is the set of neighbors of i. The set of spatially smooth random effects U_i are assigned a CAR prior, specifically in this case, a Besag prior [Besag et al 1991; Mercer et al 2014].

Required were priors for β_0 and random effect variances: σ_u^2 and σ_V^2. The β_0’s are given normal hyperprior and the latter are assigned gamma distributions [Gomez-Rubio et al, 2010]. The parameters are then estimated using an approximate Bayesian framework, namely INLA; which relies on the Gaussian Markov Random Field as supported by Rue et al 2009.
Including Sampling Weights in the Model

The sampling weights are required to adjust for biases due to complex surveys. A survey is complex in the context of choice of sampling scheme, rates of no-responses and objectivity introduced in the sample. For example, a multi-stage sampling framework each carried out in a strata, may introduce non-response bias, non-coverage bias and variance.

While bias due to variance is taken care of by smoothing in hierarchical models, the other types of bias are countered by introducing weights in our model. However, non-response bias is explained by post-stratification which requires sampling population data [Cici et al 2014]; this might not be available in some survey datasets. Weights can be incorporated in the model response in two ways highlighted below. The first option was used in our analysis.

a) Direct Standardization of Proportions using design weight

In the simplest form, weights \(w_{ij} \) adjusts true population mean \(\hat{y}_{u,i} \) as:

\[
\hat{y}_{u,i} = \frac{\sum_{j} w_{ij} y_{ij}}{\sum_{j} w_{ij}} = \bar{y}_i \quad \text{...(5)}
\]

\(w_{ij} = \left(\frac{N_i}{n_i} \right) \); \(i,j \) indexes area and observation in an area, respectively

\[
\text{var}(\hat{y}_{u,i}) = \left(1 - \frac{n_i}{N_i} \right) s_i^2; \quad s_i^2 \text{ is sample variance.}
\]

This expression only reduces bias from non-coverage and confounding but not non-response.

b) Horwitz –Thompson estimator for Bayesian hierarchical model

The most commonly used direct unbiased estimator of the area proportion in complex surveys is the post-stratified Horwitz-Thompson estimator [Horvitz and Thompson 1952, Sarndal et al 1992]. This weighting option is more robust in the sense that it takes care grouping variables that discriminate outcomes to subpopulations, for example, the age-gender structure of the population under study.

\[
\hat{p}_i = \frac{\sum_{j=1}^{J} \sum_{k=1}^{K} R_{ijk} w_{ijk} y_{ijk}}{\sum_{j=1}^{J} \sum_{k=1}^{K} R_{ijk} w_{ijk}} \quad \text{...(6)}
\]

\(y_{ijk} \) is the observed response.

\(w_{ijk} \) is the sampling weights of \(k \)th person in area \(i \) and group \(j \), a group could permutations of factor variables like age and gender etc

Using Horwitz-Thompson estimator, weights are often calculated as the products of the reciprocal of sampling probability for selection (design weight) and the post-stratification weights:

\[
w_{ijk} = \frac{1}{\pi_{ijk}} \times \frac{N_i}{N_i} \quad \text{for} \quad k=1,\ldots,N_{ij}
\]

\[
\text{Where} \quad N_j = \sum_{i=1}^{I} \sum_{k=1}^{K} R_{ijk} \pi_{ijk}^{-1} \quad \text{so that} \quad N_j = \sum_{i=1}^{I} \sum_{k=1}^{K} w_{ijk}, \quad \text{the known group totals in the population.}
\]

Hence the design weight adjusts for systematic sampling used, while the post-stratification weights attempt to adjust for non-response, by rescaling each group \(j \) so that the estimated population total matches the known population total. The estimated variance for post-stratified mean is:

\[
\text{var}(\hat{p}_i) = \frac{1}{n_i(n_i-1)} \left(1 - \frac{n_i}{N_i} \right) \sum_{j=1}^{J} \sum_{k=1}^{K} R_{ijk} \rho_{ijk}^2; \quad \rho_{ijk} = y_{ijk} - \hat{p}_j
\]

\[
\quad \text{is sample variance.}
\]

\[
\quad \text{...(8)}
\]
The effective number of cases is defined by:
\[y^* = m_i^* \times \hat{p}_i \] (9)

Model Selection

The best model was selected in terms of prediction of the values in the small areas using the DIC (Deviance Information Criterion)- a hierarchical modelling generalization of the BIC-when all models are run on the same data. Model with the smallest DIC is picked for inference.

\[D(\theta) = -2 \log(p(y|\theta)) + C \]

\[DIC = D(\hat{\theta}) + 2P_D \]

\[P_D = 0.5 \nu ar(D(\theta)) \]

is the effective number of parameters [Gelman et al 2004]. The more the number of effective parameters, the bigger chances of over-fitting we have, so the DIC is penalized to avoid effects of over-fitting.

\[p(y|\theta); is \ the \ likelihood \ function \ and \ C \ is \ a \ constant \ that \ cancels \ out \ in \ all \ calculations \ comparing \ different \ models. \]

Extracting Results

The main results to be extracted are the summary of predicted means and standard errors- for each study area as sampled from the predictive distribution. These results are merged with the boundary shapefiles and mapped accordingly.

Posterior distributions of spatially structured and unstructured random effects were also extracted, which are plotted and mapped. These help diagnose presence of multimodal distribution in spatial estimates, evaluate proportion of variance explained by spatially structured component etc.

Besides calculating and mapping the fitted values and spatial risk we can also manually use predictions to evaluate spatial exceedance for a relative risk of \(p \) say (Pr\([p > 0.4] \)).

References

County Profiles